Cardiac dysfunction after ischemic AKI in mice
小鼠缺血性 AKI 后的心脏功能障碍
基本信息
- 批准号:10217436
- 负责人:
- 金额:$ 59.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-10 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:Acetyl Coenzyme AAcuteAcute Renal Failure with Renal Papillary NecrosisAffectAmino AcidsAntioxidantsBasic ScienceCardiacCharacteristicsCitric Acid CycleClinicalConsumptionDataDialysis patientsDialysis procedureDistantEchocardiographyElectron Spin Resonance SpectroscopyEnergy MetabolismEssential Amino AcidsFunctional disorderGlutamineGlutathioneGlycolysisGoalsGrantHeartHeart failureImpairmentInjuryInjury to KidneyKidneyLinkMediatingMediator of activation proteinMetabolicMetabolismMindMitochondriaMusMyocardial dysfunctionNephrologyNonesterified Fatty AcidsOrganOxidative PhosphorylationPathway interactionsPatient CarePatientsPhosphorylationPlasmaProductionPublishingReactive Oxygen SpeciesReportingResolutionRespirationStressSuperoxidesSupplementationSyndromeSystemic diseaseTestingTissuesUp-Regulationaerobic glycolysisbaseclinically relevantepidemiologic dataglucose metabolismheart functionimprovedin vivoinhibitor/antagonistmortalitymouse modelnovelpreventwasting
项目摘要
Abstract
The overall goal of this proposal is to determine the mechanisms by which acute kidney injury (AKI) leads to
acute cardiac dysfunction. Clinically, AKI-mediated cardiac dysfunction is known as cardiorenal syndrome type
3 (CRS3). The mechanisms underpinning CRS3 are not well understood and few plausible mediators of CRS3
have been identified. We recently demonstrated that ischemic AKI causes cardiac dysfunction in mice which
was associated with a 50% reduction in cardiac ATP levels. Thus, cardiac energy metabolism and production
is impaired during AKI and is a fundamental characteristic of CRS3. To identify mediators of CRS3, we
examined plasma and cardiac metabolites. We expected to identify increased levels of circulating metabolites
that might affect cardiac energy metabolism. Rather, we found that numerous metabolites necessary to
maintain cardiac energy production and anti-oxidant defense were deficient in the plasma and heart after AKI,
including over a dozen amino acids and the anti-oxidant glutathione. During cardiac stress, amino acids are
essential substrates for ATP production. Glutamine is particularly important since it can be metabolized to
substrates for both ATP and glutathione synthesis. Glutathione is the most abundant anti-oxidant in the heart
and is critical to maintain normal energy production since excess reactive oxygen species (ROS) impairs
mitochondrial function and inhibits oxidative phosphorylation (OXPHOS). OXPHOS occurs within mitochondria
and is normally the major mechanism of cardiac ATP production. Our preliminary data demonstrate that during
AKI: 1) cardiac mitochondrial function and OXPHOS are impaired, 2) cardiac superoxide (O2●-, an ROS) is
significantly increased, 3) glutamine significantly increases cardiac ATP and reduces O2●-. Based on these
data, our overall hypothesis is that the deficiency of energy substrates and glutathione precursors during AKI
results in increased reactive oxygen species, reduced OXPHOS, reduced ATP production, and cardiac
dysfunction. We have 3 Aims. Aim 1: Determine the effect of AKI on cardiac energy metabolism via metabolic
flux analysis. Aim 2: Determine the mechanisms by which glutamine improves cardiac ATP production after
AKI, in vivo, with the hypothesis that glutamine will reduce cardiac O2●-, increase ATP production, and improve
mitochondrial and cardiac function. Aim 3: Determine the substrates of glutamine metabolism that improve
cardiac ATP production after AKI, ex vivo, with the hypothesis that metabolism to glutathione is the primary
mechanism of glutamine benefit. Since the complications of AKI have long been considered to be due to the
accumulation of metabolic wastes and other substances that may be removed by dialysis for patient benefit,
our overall hypothesis that substrate deficiency is a mechanisms of harm is a paradigm shift that challenges
one of the most fundamental notions in nephrology and will have wide ranging implications regarding the care
of patients with AKI, particularly regarding dialysis.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah g Faubel其他文献
Sarah g Faubel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah g Faubel', 18)}}的其他基金
Cardiac dysfunction after ischemic AKI in mice
小鼠缺血性 AKI 后的心脏功能障碍
- 批准号:
10600058 - 财政年份:2021
- 资助金额:
$ 59.25万 - 项目类别:
Cardiac dysfunction after ischemic AKI in mice
小鼠缺血性 AKI 后的心脏功能障碍
- 批准号:
10403537 - 财政年份:2021
- 资助金额:
$ 59.25万 - 项目类别:
The role of acute kidney in the pathogenesis of sepsis from pneumonia
急性肾在肺炎脓毒症发病机制中的作用
- 批准号:
9003708 - 财政年份:2016
- 资助金额:
$ 59.25万 - 项目类别:
Mechanisms of susceptibility to sepsis after acute kidney injury
急性肾损伤后脓毒症易感性机制
- 批准号:
9130408 - 财政年份:2015
- 资助金额:
$ 59.25万 - 项目类别:
The anti-inflammatory response after acute kidney injury
急性肾损伤后的抗炎反应
- 批准号:
8971956 - 财政年份:2013
- 资助金额:
$ 59.25万 - 项目类别:
The anti-inflammatory response after acute kidney injury
急性肾损伤后的抗炎反应
- 批准号:
8624513 - 财政年份:2013
- 资助金额:
$ 59.25万 - 项目类别:
The anti-inflammatory response after acute kidney injury
急性肾损伤后的抗炎反应
- 批准号:
8442169 - 财政年份:2013
- 资助金额:
$ 59.25万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 59.25万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 59.25万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 59.25万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 59.25万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 59.25万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 59.25万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 59.25万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 59.25万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 59.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 59.25万 - 项目类别:
Operating Grants