Detection and evolution of diffusely abnormal white matter in multiple sclerosis: a deep learning approach
多发性硬化症中弥漫性异常白质的检测和进化:深度学习方法
基本信息
- 批准号:10217627
- 负责人:
- 金额:$ 23.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffectArtificial IntelligenceAttenuatedBig DataBlindedBrainCerebrospinal FluidCharacteristicsClinicalClinical ManagementComplexConduct Clinical TrialsDataDemyelinating DiseasesDemyelinationsDetectionDevelopmentDiagnosisDiffuseDiseaseDisease ProgressionEngineeringEvolutionFrequenciesFunctional disorderFutureGliosisGoalsHistologyImageImage AnalysisIndividualKnowledgeLabelLeadLearningLesionLiquid substanceLocationLongitudinal StudiesMachine LearningMagnetic Resonance ImagingManualsMeasurementMeasuresMedical ImagingMethodsModelingMulti-Institutional Clinical TrialMultiple SclerosisMultiple Sclerosis LesionsNatureNerve DegenerationPathologic ProcessesPatientsPatternPharmaceutical PreparationsPhasePlayPrevalenceProcessProtonsPublicationsRandomized Clinical TrialsRecoveryRelapsing-Remitting Multiple SclerosisReportingResolutionResourcesRoleScanningT2 weighted imagingTechniquesTestingTherapeuticTimeTrainingUnited States National Institutes of HealthValidationautomated segmentationaxonopathybasebrain tissueburden of illnesscohortconvolutional neural networkcostdeep learningdeep neural networkdensityfollow-upgray matterimaging modalityimproved outcomelarge datasetsmachine learning algorithmmodel developmentmultiple sclerosis patientnervous system disorderneuroimagingnovelsuccesstargeted treatmenttreatment effectwhite matteryoung adult
项目摘要
Multiple sclerosis (MS) is the most widespread non-traumatic, demyelinating disorder in young adults.
Magnetic resonance imaging (MRI) aids in both diagnosing MS and assisting clinical management of patients.
In addition to focal MS lesions, diffusely abnormal white matter (DAWM) is also seen on brain MRI in MS
patients. While not understood completely, DAWM is thought to be a predictor of disease burden, possibly
appears early on in the disease, and may be a marker of neurodegeneration in MS. However, longitudinal
studies of DAWM are lacking, and segmentation of DAWM is manual, making it difficult to study the evolution
of DAWM. The main objective of this proposal is to longitudinally study the development of DAWM in MS. This
objective will be realized by analyzing preexisting longitudinal MRI data acquired on 1008 MS patients who
participated in phase 3, blinded, multi-center clinical trial, referred to as CombiRx that was supported by NIH.
The CombiRx data includes multi-contrast MRI and various clinical measures. Automatic identification of
DAWM is a critical component of this proposal. Based on our preliminary studies, deep Learning (a class of
machine learning algorithms) has the potential to automatically identify DAWM and estimate its volume. We will
use the large CombiRx MRI data for training, validation, and testing of the deep learning models, and to study
DAWM evolution in this MS cohort. The proposal has two major aims. In the first aim we will develop a deep
learning model based on fully-convolutional neural networks for automatic segmentation of DAWM, gray
matter, normal appearing white matter, and T2-hyperintense lesions guided by manual segmentation of two
neuroimaging experts. In the second aim we will segment DAWM and all brain tissues, including focal lesions,
at baseline and all available follow-up scans in the CombiRx cohort (up to 6.5 years). The temporal changes in
volume, location, and MRI parameters of DAWM and focal T2 lesions will be computed. We will finally test
whether DAWM is precursor to focal T2 lesions, associated with T2 lesion resolution, or a separate disease
process altogether. If DAWM is shown to occur early on in the disease, it is possible to intervene sooner for
improved outcome. Similarly, if DAWM is shown to be related to disease activity, it can serve as an objective
and quantitative measure of the disease. Such an objective measurement would be highly valuable in
developing targeted therapies and also in evaluating the treatment effect in MS patients.
多发性硬化症(MS)是年轻人中最普遍的非创伤性脱髓鞘疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Refaat E Gabr其他文献
Refaat E Gabr的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 23.4万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 23.4万 - 项目类别:
Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 23.4万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 23.4万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 23.4万 - 项目类别:
Standard Grant
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 23.4万 - 项目类别:
Discovery Projects
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 23.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 23.4万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 23.4万 - 项目类别:
EU-Funded
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 23.4万 - 项目类别:
Fellowship














{{item.name}}会员




