Molecular Mechanisms of Adjuvant Triplet Combinations
佐剂三联体组合的分子机制
基本信息
- 批准号:10220543
- 负责人:
- 金额:$ 62.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-12 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AdjuvantAgonistAttenuatedAttenuated VaccinesCD8-Positive T-LymphocytesCell CommunicationCell membraneCellsCellular immunotherapyCoculture TechniquesComplexDNA-Protein InteractionDataData ScienceDecision MakingDendritic CellsFutureGeneticGenetic TranscriptionGenomicsHumanImageImmuneImmune responseImmune systemImmunityImmunologyImmunomodulatorsIn VitroInfectionLeadLifeMeasuresModelingModified Vaccinia Virus AnkaraMolecularMusNatural ImmunityOrganismOutputPathway interactionsPhosphorylationPhosphotransferasesPlayPopulationPoxviridae InfectionsProcessPropertyProtein BiosynthesisProtein KinaseProtein SecretionProteinsProteomeProteomicsRegulationRegulator GenesResearchShapesSignal TransductionSiteSkinSurfaceT cell responseT memory cellT-LymphocyteTestingTissuesToll-like receptorsTriplet Multiple BirthVaccinationVaccine DesignVaccinia virusWhole OrganismWorkbasecell typechromatin proteincombinatorialcomparativedesigndraining lymph nodeds-DNAexperimental studyextracellularfrontierimprovedinnovationinsightlymph nodesmicrobialmouse modelmultimodalitynovel vaccinespathogenprotective effectprotein complexreceptorresponsesensorskin vaccinationstatisticstumorvaccine development
项目摘要
Abstract: Molecular Mechanisms of Adjuvant Triplet Combinations
The immune system makes decisions in response to complex combinations of microbial inputs. Live vaccines
that are empirically attenuated from pathogens have been a powerful means to yield life-long immunity against
many deadly pathogens because they mimic immune responses to combinations of microbial signals. However,
the rational design of non-live vaccines using immunomodulatory agents such as adjuvants has remained an
elusive task in many cases where live vaccination is not efficacious or feasible, in part because identifying potent
adjuvant combinations and associated molecular mechanisms that explain cross talk remains a major challenge.
Based on our recent findings and extensive preliminary data, we propose to define the molecular mechanisms
through which two adjuvant triplets – containing agonists for Toll-like receptor (TLR), C-type lection receptor
(CLR), RIG-I-like receptor (RLR), and cytosolic dsDNA sensor (CDS) pathways – induce protective CD4+ and
CD8+ T cell responses in mice. We will use an innovative approach which is (i) comparative – by contrasting the
quantitative effects of adjuvant triplets and matching singles and pairs as means to accurately pinpoint molecular
mechanisms explaining cross talk; and (ii) multiscale – by studying molecular mechanisms at play in cells, tissues,
and the whole body. First, we will determine the molecular mechanisms of intra-cellular signaling cross talk by
adjuvant triplets by testing hypotheses at the level of protein complexes proximal to adjuvant receptors,
phosphorylation cascades and kinase-substrate relationships, and gene regulatory networks. Second, we will
identify the molecular mechanisms through which adjuvant combinations impact inter-cellular signaling between
dendritic cells (DCs) and T cells by testing hypotheses on the regulatory mechanisms shaping the cellular,
surface, and secreted proteome of DCs. Third, we will test hypotheses on the effects of adjuvant triplets on the
organism-wide spreading and seeding of effector and memory T cells, and the underlying cell circuits of the skin
(vaccination site) and draining lymph node that explain the induction of protective, long-term T cell immunity.
Results from this work will produce critical insights at the forefront of adjuvant combination research by
characterizing higher-order combinations of adjuvants that can mimic the effects of well-established, potent live
attenuated vaccines and inform future vaccine designs against infection.
翻译后摘要:佐剂三联体组合的分子机制
免疫系统对微生物输入的复杂组合做出反应。活疫苗
从病原体中经验性地减弱的疫苗是产生终身免疫的有力手段,
许多致命的病原体,因为它们模拟了对微生物信号组合的免疫反应。然而,在这方面,
使用免疫调节剂如佐剂的非活疫苗的合理设计仍然是一个
在活疫苗接种不有效或不可行的许多情况下,这是一项难以捉摸的任务,部分原因是
佐剂组合和解释串扰的相关分子机制仍然是一个主要的挑战。
基于我们最近的发现和广泛的初步数据,我们建议定义分子机制
通过其两种含有Toll样受体(TLR)、C-型凝集素受体(Lectin receptor)
(CLR)、RIG-I样受体(RLR)和胞质dsDNA传感器(CDS)途径-诱导保护性CD 4+和CD 4 + T细胞,
小鼠中的CD 8 + T细胞应答。我们将使用一种创新的方法,即(i)比较-通过对比
佐剂三联体和匹配的单对和配对的定量效应作为精确定位分子的手段,
解释串扰的机制;和(ii)多尺度-通过研究在细胞,组织,
和整个身体。首先,我们将确定细胞内信号串扰的分子机制,
佐剂三联体通过在佐剂受体附近的蛋白质复合物水平上测试假设,
磷酸化级联和激酶-底物关系,以及基因调控网络。二是
确定佐剂组合影响细胞间信号传导的分子机制,
树突状细胞(DC)和T细胞,
表面和分泌的蛋白质组。第三,我们将检验关于佐剂三联体对肿瘤细胞增殖的影响的假设。
效应T细胞和记忆T细胞的生物体范围内的传播和播种,以及皮肤的底层细胞回路
(疫苗接种部位)和引流淋巴结,这解释了保护性长期T细胞免疫的诱导。
这项工作的结果将在佐剂组合研究的最前沿产生重要的见解,
表征佐剂的更高阶组合,其可以模拟良好建立的有效的活细胞免疫调节剂的作用,
减毒疫苗,并为未来的疫苗设计提供信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicolas Chevrier其他文献
Nicolas Chevrier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicolas Chevrier', 18)}}的其他基金
Molecular Mechanisms of Adjuvant Triplet Combinations
佐剂三联体组合的分子机制
- 批准号:
10371167 - 财政年份:2021
- 资助金额:
$ 62.36万 - 项目类别:
Molecular Mechanisms of Adjuvant Triplet Combinations
佐剂三联体组合的分子机制
- 批准号:
10578760 - 财政年份:2021
- 资助金额:
$ 62.36万 - 项目类别:
Building a Predictive Framework for Adjuvant Combinatorics in Vaccine Development
建立疫苗开发中佐剂组合的预测框架
- 批准号:
9562727 - 财政年份:2018
- 资助金额:
$ 62.36万 - 项目类别:
相似国自然基金
Agonist-GPR119-Gs复合物的结构生物学研究
- 批准号:32000851
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
S1PR1 agonistによる脳血液関門制御を介した脳梗塞の新規治療法開発
S1PR1激动剂调节血脑屏障治疗脑梗塞新方法的开发
- 批准号:
24K12256 - 财政年份:2024
- 资助金额:
$ 62.36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AHR agonistによるSLE皮疹の新たな治療薬の開発
使用 AHR 激动剂开发治疗 SLE 皮疹的新疗法
- 批准号:
24K19176 - 财政年份:2024
- 资助金额:
$ 62.36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Evaluation of a specific LXR/PPAR agonist for treatment of Alzheimer's disease
特定 LXR/PPAR 激动剂治疗阿尔茨海默病的评估
- 批准号:
10578068 - 财政年份:2023
- 资助金额:
$ 62.36万 - 项目类别:
AUGMENTING THE QUALITY AND DURATION OF THE IMMUNE RESPONSE WITH A NOVEL TLR2 AGONIST-ALUMINUM COMBINATION ADJUVANT
使用新型 TLR2 激动剂-铝组合佐剂增强免疫反应的质量和持续时间
- 批准号:
10933287 - 财政年份:2023
- 资助金额:
$ 62.36万 - 项目类别:
Targeting breast cancer microenvironment with small molecule agonist of relaxin receptor
用松弛素受体小分子激动剂靶向乳腺癌微环境
- 批准号:
10650593 - 财政年份:2023
- 资助金额:
$ 62.36万 - 项目类别:
AMPKa agonist in attenuating CPT1A inhibition and alcoholic chronic pancreatitis
AMPKa 激动剂减轻 CPT1A 抑制和酒精性慢性胰腺炎
- 批准号:
10649275 - 财政年份:2023
- 资助金额:
$ 62.36万 - 项目类别:
A randomized double-blind placebo controlled Phase 1 SAD study in male and female healthy volunteers to assess safety, pharmacokinetics, and transient biomarker changes by the ABCA1 agonist CS6253
在男性和女性健康志愿者中进行的一项随机双盲安慰剂对照 1 期 SAD 研究,旨在评估 ABCA1 激动剂 CS6253 的安全性、药代动力学和短暂生物标志物变化
- 批准号:
10734158 - 财政年份:2023
- 资助金额:
$ 62.36万 - 项目类别:
Investigating mechanisms underpinning outcomes in people on opioid agonist treatment for OUD: Disentangling sleep and circadian rhythm influences on craving and emotion regulation
研究阿片类激动剂治疗 OUD 患者结果的机制:解开睡眠和昼夜节律对渴望和情绪调节的影响
- 批准号:
10784209 - 财政年份:2023
- 资助金额:
$ 62.36万 - 项目类别:
A novel nanobody-based agonist-redirected checkpoint (ARC) molecule, aPD1-Fc-OX40L, for cancer immunotherapy
一种基于纳米抗体的新型激动剂重定向检查点 (ARC) 分子 aPD1-Fc-OX40L,用于癌症免疫治疗
- 批准号:
10580259 - 财政年份:2023
- 资助金额:
$ 62.36万 - 项目类别:
Identification and characterization of a plant growth promoter from wild plants: is this a novel plant hormone agonist?
野生植物中植物生长促进剂的鉴定和表征:这是一种新型植物激素激动剂吗?
- 批准号:
23K05057 - 财政年份:2023
- 资助金额:
$ 62.36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)