Programmable Synthetic Organelles Built from Disordered Proteins for Cellular Engineering
由无序蛋白质构建的可编程合成细胞器,用于细胞工程
基本信息
- 批准号:10220971
- 负责人:
- 金额:$ 41.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:Activities of Daily LivingAddressAmino Acid SequenceApoptoticArginineAutomobile DrivingBiochemicalBiochemical ReactionBiological ModelsCell CycleCell Cycle RegulationCell LineCell ProliferationCell modelCell physiologyCellsCessation of lifeChemicalsCuesCustomDecision MakingDevelopmentDiseaseEngineeringEnsureEnzymesGelGenetic TranscriptionGlycineGoalsGrowthHematopoietic stem cellsIn VitroLengthLightLiquid substanceMammalian CellMembraneMethodsModelingNatural regenerationOpticsOrganellesPathway interactionsPerformancePhasePhysiologicalPropertyProtein EngineeringProteinsRegenerative MedicineRegulationRoleSolubilityStimulusSystemTechnologyTemperatureTimeTissuesWorkYeastsbasecapsulecell behaviorcell growthcell typecellular engineeringcontrolled releasedesigneffectiveness evaluationhuman tissuein silicoinnovationnanocapsulenanoscalenoveloptical switchoutcome predictionprogenitorprogramsprotein degradationrecruitresponseself assemblystem cell differentiationstem cell fatesynthetic biologysynthetic constructtechnology developmenttooltranscription factor
项目摘要
Abstract
The engineering of cellular decision-making – such as entry into the cell cycle or stem cell differentiation – is
critical to our ability to regenerate functional cells and tissues. The development of these technologies is limited
by the extent to which one can manipulate the endogenous cellular machinery. Membraneless organelles are
naturally-occurring assemblies of intrinsically disordered proteins (IDPs) that form protein-rich, fluid-like phases
in cells. With insightful engineering, these organelles can provide a means for directing cell physiology through
the compartmentalization and release of regulatory molecules. Recently, we developed a novel platform for the
assembly of membraneless organelles endowed with a myriad of novel properties and control motifs. Our
methods are based on engineering intrinsically-disordered arginine-glycine rich RGG domains that are sufficient
to drives phase separation. The premise of our application is the development of numerous, state-of-the-art IDP
materials for assembly of new, designer membraneless organelles. We have developed methods to dynamically
modulate the multivalency of RGG sequences and introduced protein-interaction motifs to allow sequestration
of designated cargo. We propose to develop strategies for controlling the rapid release and sequestration of
cargo proteins in response to optical and thermal stimuli. Further, we propose the develop optical and enzymatic
controllers for organelle assembly and disassembly. Importantly, we have already demonstrated the expression
of the sequences is sufficient to generate membraneless organelle in yeast and mammalian cell lines. Here we
propose a novel, innovative paradigm in synthetic biology for controlling cellular responses through the
manipulation of membraneless organelles. These organelles will be designed to sequester factors that control
cell cycle commitment or cell fate decisions on cue, in response to light or biochemical stimulus. The ultimate
goal of the proposed work is to control the dynamic progression through the cell cycle and cell fate decision-
making in hematopoietic stem cells for regenerative medicine. In aim 1, we will expand the toolbox of self-
assembling IDPs by engineering optical and thermal switches within disordered protein materials for dynamic
gating of organelle assembly, composition and release. In aim 2, we will use membranless organelles for cell
decision-making, rapidly sequestering and releasing target proteins to dynamically control cell proliferation and
stem cell fate. Harnessing the power of compartmentalization, our designer organelles promise a tunable
biochemical niche and a generalizable strategy for precisely engineering cell systems capable of responding to
specific stimuli with predictable outcomes.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Charlton Good其他文献
Matthew Charlton Good的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Charlton Good', 18)}}的其他基金
Programmable Synthetic Organelles Built from Disordered Proteins for Cellular Engineering
由无序蛋白质构建的可编程合成细胞器,用于细胞工程
- 批准号:
10018715 - 财政年份:2019
- 资助金额:
$ 41.48万 - 项目类别:
Programmable Synthetic Organelles Built from Disordered Proteins for Cellular Engineering
由无序蛋白质构建的可编程合成细胞器,用于细胞工程
- 批准号:
10451697 - 财政年份:2019
- 资助金额:
$ 41.48万 - 项目类别:
Regulation of the Timing and Spatial Patterning of Zygotic Genome Activation During Embryogenesis
胚胎发生过程中合子基因组激活的时间和空间模式的调控
- 批准号:
9751334 - 财政年份:2018
- 资助金额:
$ 41.48万 - 项目类别:
Regulation of the Timing and Spatial Patterning of Zygotic Genome Activation During Embryogenesis
胚胎发生过程中合子基因组激活的时间和空间模式的调控
- 批准号:
10456318 - 财政年份:2018
- 资助金额:
$ 41.48万 - 项目类别:
Regulation of the Timing and Spatial Patterning of Zygotic Genome Activation During Embryogenesis
胚胎发生过程中合子基因组激活的时间和空间模式的调控
- 批准号:
10226269 - 财政年份:2018
- 资助金额:
$ 41.48万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 41.48万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 41.48万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 41.48万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 41.48万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 41.48万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 41.48万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 41.48万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 41.48万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 41.48万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 41.48万 - 项目类别:
Research Grant