High-throughput characterization of epigenetic context on DNA double strand break repair dynamics
DNA 双链断裂修复动力学表观遗传背景的高通量表征
基本信息
- 批准号:10223883
- 负责人:
- 金额:$ 5.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAgingBiological AssayBiologyBiomedical EngineeringCRISPR interferenceCRISPR/Cas technologyCell CycleCell DeathCellsChIP-seqCharacteristicsChromatinClustered Regularly Interspaced Short Palindromic RepeatsComplexDNADNA DamageDataData SetDevelopmentDiseaseDouble Strand Break RepairEnsureEnvironmentEpigenetic ProcessEuchromatinEventExhibitsG22P1 geneGamma-H2AXGene ActivationGene Expression RegulationGenetic CodeGenetic TranscriptionGenomeGenome engineeringGenomicsHeightHereditary DiseaseHeterochromatinHeterogeneityImageInternationalKineticsLeadLightLiteratureLocationMaintenanceMalignant NeoplasmsMeasuresMentorsMethodsMutationNucleic AcidsOrganismOutcomePOLR2A genePathway interactionsPhenotypePhysiciansPhysiologicalProcessProteinsProtocols documentationRNA Polymerase IIReportingResearchResearch PersonnelResolutionRoleSafetySchemeScientistShapesSiteSpeedSystemTechnologyTestingTimeUniversitiesUntranslated RNAVariantWidthWorkassaultbasecareer developmentchromatin immunoprecipitationdesigndoctoral studentexperiencefight againstfitnessgene repressiongenetic informationgenome editinggenome integritygenome-widegenotoxicityhistone modificationimprovedinhibitor/antagonistinsightinterestmedical schoolsnovelp53-binding protein 1preservationprogramsrecruitrepairedresponsespatiotemporalsuccesssymposiumtemporal measurement
项目摘要
Project Summary
The survival and fitness of complex multicellular organisms depend on the successful propagation and
maintenance of our “genetic code” in deoxyribonucleic acid (DNA). However, the genomic integrity of our cells
is under constant assault, so effective DNA repair processes are absolutely essential. There are many forms of
DNA damage, but double strand breaks (DSBs) are common and the most toxic. As a consequence, DSBs are
repaired by multiple redundant and/or competing repair pathways. After DSBs are formed, how the cell detects
the damage, recruits specific DNA repair effectors, and decides pathway choice are important questions. While
recent literature has made great strides in these directions, the spatiotemporal dynamics of repair factor
recruitment at single DSBs have not been sufficiently explored. This has been a challenging question to address
because no method has been able to generate pure, sequence specific DSBs with the temporal resolution that
matches the rapidity of the DSB damage response. We recently developed a very fast, light-inducible
CRISPR/Cas9 system that fulfills this purpose. Preliminary data have demonstrated that our system efficiently
induces DSBs within seconds, and we have used this system to investigate the dynamics of repair factor
recruitment primarily through imaging assays. However, we can only interrogate a single break site at a time due
to the technical limitations of imaging. Enabled by the technological advances of our new method, I propose to
study the dynamics of DSB response in high-throughput and on genomic coordinates. My proposed research
strategy is to 1) develop time-resolved chromatin immunoprecipitation sequencing (ChIP-seq) assays to track
the recruitment or departure of several DNA damage response (DDR) factors after synchronized DSBs at a
validated target sequence, 2) establish a platform for generating hundreds of sequence-specific DSBs, followed
by ChIP-seq to correlate the spatiotemporal dynamics of DDR factors with prior epigenetic and transcriptional
states, and 3) induce perturbations with transcription inhibitors and CRISPR-based gene activation or repression
(CRISPRa or CRISPRi, respectively) to establish cause and effect relationships between transcription and DDR
factor recruitment. Together, these studies will further elucidate how cells physiologically respond to genotoxic
insults and validate a novel platform for investigating how those responses are crippled by disease, especially
in cancer and inherited disorders of DNA repair. Furthermore, improved understanding of how cells repair DSBs
will help enhance the safety and efficacy of genome editing agents like CRISPR/Cas9.
项目概要
复杂多细胞生物的生存和适应取决于成功的繁殖和
维护我们脱氧核糖核酸(DNA)中的“遗传密码”。然而,我们细胞的基因组完整性
正遭受持续的攻击,因此有效的 DNA 修复过程绝对必要。有多种形式
DNA 损伤,但双链断裂 (DSB) 很常见,而且毒性最强。因此,DSB 是
通过多个冗余和/或竞争性修复途径进行修复。 DSB 形成后,细胞如何检测
损伤、招募特定的 DNA 修复效应器以及决定途径选择都是重要的问题。尽管
最近的文献在这些方向上取得了长足的进步,修复因子的时空动态
单一 DSB 的招募尚未得到充分探索。这是一个有挑战性的问题
因为没有任何方法能够生成纯的、序列特定的 DSB,其时间分辨率达到
与 DSB 损伤响应的速度相匹配。我们最近开发了一种非常快速的光诱导
CRISPR/Cas9系统可以实现这一目的。初步数据表明我们的系统有效
在几秒钟内诱导 DSB,我们使用该系统来研究修复因子的动态
主要通过成像测定进行招募。然而,我们一次只能询问一个断裂位点,因为
成像技术的限制。通过我们新方法的技术进步,我建议
研究高通量和基因组坐标上 DSB 响应的动态。我提出的研究
策略是 1) 开发时间分辨染色质免疫沉淀测序 (ChIP-seq) 分析来追踪
在同步 DSB 后,几个 DNA 损伤反应 (DDR) 因子的招募或离开
验证目标序列,2) 建立一个平台来生成数百个序列特异性 DSB,然后
通过 ChIP-seq 将 DDR 因子的时空动态与先前的表观遗传和转录相关联
状态,3) 通过转录抑制剂和基于 CRISPR 的基因激活或抑制诱导扰动
(分别是 CRISPRa 或 CRISPRi)建立转录与 DDR 之间的因果关系
要素招募。总之,这些研究将进一步阐明细胞如何对基因毒性做出生理反应
侮辱并验证一个新的平台,用于调查这些反应如何被疾病削弱,特别是
癌症和 DNA 修复遗传性疾病。此外,加深了对细胞如何修复 DSB 的了解
将有助于提高 CRISPR/Cas9 等基因组编辑剂的安全性和有效性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roger Zou其他文献
Roger Zou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roger Zou', 18)}}的其他基金
High-throughput characterization of epigenetic context on DNA double strand break repair dynamics
DNA 双链断裂修复动力学表观遗传背景的高通量表征
- 批准号:
10066106 - 财政年份:2020
- 资助金额:
$ 5.1万 - 项目类别:
High-throughput characterization of epigenetic context on DNA double strand break repair dynamics
DNA 双链断裂修复动力学表观遗传背景的高通量表征
- 批准号:
10453766 - 财政年份:2020
- 资助金额:
$ 5.1万 - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 5.1万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 5.1万 - 项目类别:
Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 5.1万 - 项目类别:
Collaborative R&D
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 5.1万 - 项目类别:
Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 5.1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 5.1万 - 项目类别:
Studentship
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 5.1万 - 项目类别:
Standard Grant
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 5.1万 - 项目类别:
Fellowship Award
虚弱高齢者のSuccessful Agingを支える地域課題分析指標と手法の確立
建立区域问题分析指标和方法,支持体弱老年人成功老龄化
- 批准号:
23K20355 - 财政年份:2024
- 资助金额:
$ 5.1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
「ケア期間」に着目したbiological aging指標の開発
开发聚焦“护理期”的生物衰老指数
- 批准号:
23K24782 - 财政年份:2024
- 资助金额:
$ 5.1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




