Optimizing Just-in-Time Adaptive Intervention to Improve Dietary Adherence in Behavioral Obesity Treatment: A Micro-randomized Trial
优化及时适应性干预以提高行为肥胖治疗中的饮食依从性:一项微观随机试验
基本信息
- 批准号:10223435
- 负责人:
- 金额:$ 60.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdherenceAdultAlgorithmsAwarenessBehaviorBehavioralBody Weight ChangesBody Weight decreasedCardiovascular DiseasesCellular PhoneClinicalDataDevelopmentDietDietary InterventionEating BehaviorEcological momentary assessmentEducationEnergy IntakeEnsureEnvironmental Risk FactorFoodFrequenciesFundingFutureGoalsGoldHealth behaviorHourIndividualInformal Social ControlIntakeInterventionLocationMachine LearningMeasuresMethodologyMonitorMoodsMotivationObesityOutcomeOverweightPalateParticipantPatient Self-ReportPatientsPersonsPharmaceutical PreparationsPsychological FactorsRandomizedResearchResearch MethodologyRiskSamplingScienceSelf EfficacySeveritiesSuggestionTestingTextTheoretical modelTimeUnited States National Institutes of HealthUpdateWeightWorkWristadaptive interventionbasebehavioral adherencebrief interventionclinically significantdietarydietary adherencedisorder riskexperiencefallsfollow-uphandheld mobile devicehigh riskimprovedinnovationinterestmachine learning algorithmobesity treatmentpatient engagementpilot trialpragmatic trialprediction algorithmpsychologicrandomized trialskillsskills trainingtheoriestreatment program
项目摘要
PROJECT SUMMARY/ABSTRACT
Behavioral obesity treatment produces clinically significant weight loss and reduced disease risk/severity for
many individuals with overweight/obesity and cardiovascular disease. Yet, about half of patients fall short of
expected outcomes, which can be largely attributed to lapses from the recommended diet. Our work has
shown that dietary lapses (specific instances of nonadherence to dietary goals) are frequent during weight loss
attempts (~3-4 times per week), associated with poorer weight losses, and triggered by momentary changing
states (e.g., changes in mood or availability of palatable food). Thus, there is a clear need for innovative
solutions that can provide dynamic in-the-moment interventions to improve adherence to the prescribed diet in
obesity treatment. Our research team was the first to develop a smartphone-based just-in-time adaptive
intervention (JITAI) that includes: 1) daily ecological momentary assessment (EMA; repeated sampling via
mobile device) of relevant behavioral, psychological, and environmental triggers for lapse; 2) a machine
learning algorithm that uses information gathered via EMA to determine real-time lapse risk; & 3) delivery of
brief intervention during high-risk moments. Our pilot work revealed that the JITAI was feasible, acceptable,
and produced reductions in average lapse frequency. However, we have not yet shown a direct effect of the
JITAI on eating behavior in the moment of heightened lapse risk and know little about the types of interventions
that are most effective for reducing lapse. We therefore propose to extend our research via a micro-
randomized trial (MRT), a methodology that involves random assignment to intervention (or control) at a
specific decision point, i.e., when our algorithm predicts heightened risk for a lapse. The MRT will determine
whether a specific intervention in a specific moment had its intended effect. We will therefore port our JITAI to
a more scalable online platform and conduct a MRT to evaluate the effects of a generic lapse risk alert
message and theory-driven just-in-time interventions on dietary lapses. After refinement testing with n=15 to
ensure proper technical functioning of our updated JITAI, adults with overweight/obesity (n=159) will participate
in a well-established 12-week online obesity treatment program + JITAI, with 12 weeks of JITAI-only follow-up.
When an individual is at risk for lapsing s/he will be randomized to no intervention, a generic risk alert, or one
of 4 theory-driven interventions with interactive skills training. The outcome of interest will be the occurrence
(or lack thereof) of dietary lapse, as measured both subjectively (i.e., via EMA) and objectively (i.e., via wrist-
based intake monitoring), in the hours following randomization. Results of the MRT will inform an optimized
algorithm for intervention delivery that will drive the finalized JITAI. A future RCT will compare weight loss in
obesity treatment with and without the optimized JITAI. This highly innovative approach will advance the
science of adherence by supporting the development of sophisticated theoretical models of adherence
behavior and informing JITAIs that target adherence to other health behaviors (e.g., medication, activity goals).
项目总结/摘要
行为肥胖治疗产生临床上显著的体重减轻和降低的疾病风险/严重程度,
许多人超重/肥胖和心血管疾病。然而,大约一半的患者没有达到
预期的结果,这在很大程度上可以归因于从推荐的饮食失误。我们的工作
饮食失误(不遵守饮食目标的具体情况)在减肥过程中很常见,
尝试(每周约3-4次),与减肥效果较差相关,并由瞬间改变触发
状态(例如,情绪的变化或可口食物的可用性)。因此,显然需要创新。
解决方案,可以提供动态的即时干预,以提高遵守规定的饮食,
肥胖治疗我们的研究团队是第一个开发基于智能手机的即时自适应
干预措施(JITAI)包括:1)每日生态瞬时评估(EMA;通过
移动终端)的相关行为,心理和环境触发失效; 2)机器
学习算法,使用通过EMA收集的信息来确定实时失效风险;以及3)交付
在高风险时刻进行短暂干预。我们的试点工作表明,吉泰是可行的,可以接受的,
并降低了平均延时频率。然而,我们还没有显示出直接的影响,
JITAI对失智风险升高时的饮食行为的认识不足,对干预措施的类型知之甚少
最能有效地减少失误因此,我们建议通过一个微-
随机试验(MRT),一种方法,涉及随机分配干预(或对照),
具体的决策点,即,当我们的算法预测失误的风险增加时。捷运局将决定
在特定时刻的特定干预是否达到了预期效果。因此,我们将把我们的吉泰港,
一个更具可扩展性的在线平台,并进行MRT,以评估通用失效风险警报的影响
信息和理论驱动的饮食失误及时干预。在n=15的细化测试后,
确保我们更新的JITAI技术功能正常,超重/肥胖成人(n=159)将参与
在一个完善的12周在线肥胖治疗计划+ JITAI中,有12周的JITAI随访。
当一个人处于失智风险时,他/她将被随机分配到不干预、一般风险警报或一个
4理论驱动的干预与互动技能培训。关注的结果将是发生
(or缺乏)的饮食失误,如主观测量的(即,通过EMA)和客观地(即,通过手腕-
基于摄入量监测)。MRT的结果将为优化的
干预交付的算法,将推动最终的JITAI。未来的随机对照试验将比较
使用和不使用优化的JITAI治疗肥胖。这种高度创新的方法将推动
通过支持发展复杂的粘附理论模型,
行为和告知JITAI目标是坚持其他健康行为(例如,药物、活动目标)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephanie Paige Goldstein其他文献
Stephanie Paige Goldstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephanie Paige Goldstein', 18)}}的其他基金
Validating Sensor-based Approaches for Monitoring Eating Behavior and Energy Intake by Accounting for Real-World Factors that Impact Accuracy and Acceptability
通过考虑影响准确性和可接受性的现实因素来验证基于传感器的饮食行为和能量摄入监测方法
- 批准号:
10636986 - 财政年份:2023
- 资助金额:
$ 60.78万 - 项目类别:
Using Multimodal Real-Time Assessment to Phenotype Dietary Non-Adherence Behaviors that Contribute to Poor Outcomes in Behavioral Obesity Treatment
使用多模式实时评估对导致行为性肥胖治疗效果不佳的饮食不依从行为进行表型分析
- 批准号:
10418847 - 财政年份:2022
- 资助金额:
$ 60.78万 - 项目类别:
Using Multimodal Real-Time Assessment to Phenotype Dietary Non-Adherence Behaviors that Contribute to Poor Outcomes in Behavioral Obesity Treatment
使用多模式实时评估对导致行为性肥胖治疗效果不佳的饮食不依从行为进行表型分析
- 批准号:
10615122 - 财政年份:2022
- 资助金额:
$ 60.78万 - 项目类别:
Optimizing Just-in-Time Adaptive Intervention to Improve Dietary Adherence in Behavioral Obesity Treatment: A Micro-randomized Trial
优化及时适应性干预以提高行为肥胖治疗中的饮食依从性:一项微观随机试验
- 批准号:
10029156 - 财政年份:2020
- 资助金额:
$ 60.78万 - 项目类别:
Optimizing Just-in-Time Adaptive Intervention to Improve Dietary Adherence in Behavioral Obesity Treatment: A Micro-randomized Trial
优化及时适应性干预以提高行为肥胖治疗中的饮食依从性:一项微观随机试验
- 批准号:
10622324 - 财政年份:2020
- 资助金额:
$ 60.78万 - 项目类别:
Optimizing Just-in-Time Adaptive Intervention to Improve Dietary Adherence in Behavioral Obesity Treatment: A Micro-randomized Trial
优化及时适应性干预以提高行为肥胖治疗中的饮食依从性:一项微观随机试验
- 批准号:
10427366 - 财政年份:2020
- 资助金额:
$ 60.78万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 60.78万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 60.78万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 60.78万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 60.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 60.78万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 60.78万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 60.78万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 60.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 60.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 60.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)