Data-driven QSP software for personalized colon cancer treatment
用于个性化结肠癌治疗的数据驱动 QSP 软件
基本信息
- 批准号:10227447
- 负责人:
- 金额:$ 15.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAffectAlgorithmsAlternative TherapiesAnimalsBiologicalCD4 Positive T LymphocytesCD8-Positive T-LymphocytesCancer EtiologyCell DensityCellsCessation of lifeCharacteristicsChemicalsClinicalClinical ResearchColon CarcinomaColonic NeoplasmsCombined Modality TherapyComplexComputer softwareDataData ScienceData SetDendritic CellsDifferential EquationEpithelial CellsEquationExpression ProfilingFluorouracilGenderGene ExpressionGeneticGoalsImmuneImmune responseIn VitroIndividualInflammatoryInterferonsInterleukin-2Interleukin-4Interleukin-6Killer CellsLawsLeast-Squares AnalysisLeucovorinMathematicsMeasuresMethodsModelingMolecularNecrosisPatientsPatternPharmaceutical PreparationsPharmacologic SubstancePharmacologyPilot ProjectsPrimary NeoplasmProcessProteinsRaceRadialRunningSTAT4 geneSTAT6 geneSamplingSignal TransductionSourceStatistical MethodsSystemT-Cell ActivationT-LymphocyteTechniquesTimeTreatment outcomeUncertaintyUnited StatesVariantWomanbasebiological systemscancer therapycancer typecell typecolon cancer patientscolon cancer treatmentcytokinedensitydrug actiondrug testingeffective therapyeffector T cellefficacy studyexperimental studyin vivoindividual patientindividualized medicineinnovationinterestirinotecanmacrophagemathematical methodsmathematical modelmenmodel buildingmutantnoveloptimal treatmentspatient subsetspersonalized cancer therapypersonalized medicineresearch and developmentresponsesystems of equationstargeted treatmenttooltreatment strategytumortumor growth
项目摘要
Abstract
Colon cancer is the third leading cause of cancer-related deaths in the United States in both men and women.
A major clinical challenge is to obtain an effective treatment strategy for each patient or at least identify a subset
of patients who could benefit from a particular treatment. Since each colon cancer has its own unique features,
it is very important to obtain personalized cancer treatments and find a way to tailor treatment strategies for
each patient based on each individual's characteristics, including race, gender, genetic factors, immune response
variations.
Recently, Quantitative and Systems Pharmacology (QSP) has been commonly used to discover, validate,
and test drugs. QSP models are a system of differential equations that model the dynamic interactions between
drug(s) and a biological system. These mathematical models provide an integrated “systems level” approach to
determining mechanisms of action of drugs and finding new ways to alter complex cellular networks with mono
or combination therapy to obtain effective treatments. Since QSP models are a complex system of nonlinear
equations with many unknown parameters, estimating the values of the model's parameters is extremely difficult.
Existing parameter estimation methods for QSP models often use assembled data from various sources rather
than a single curated dataset. These datasets are usually obtained through various biological experiments, in
vitro and in vivo animal studies, thus rendering QSP models hard to be practicable for personalized treatments.
To the best of our knowledge, no QSP model has been developed for personalized colon cancer treatments.
In this project, we propose a unique approach to develop a data-driven QSP software to suggest effective
treatment for each patient based on gene expression data from the primary tumor samples. Since signatures of
main characteristics of tumors, such as immune response variations, can be found in gene expression profiling
of primary tumors, we use gene expression data as input. We develop an innovative framework to systematically
employ a combination of data science, mathematical, and statistical methods to obtain personalized colon cancer
treatment. We employ novel inverse problem techniques to estimate the values of parameters of the model and
statistical methods to perform sensitivity analysis. We will use these techniques to propose an optimal treatment
strategy for each patient and predict the efficacy of the proposed treatment. The model might also suggest
alternative therapies in case of low efficacy for some patients.
摘要
结肠癌是美国男性和女性癌症相关死亡的第三大原因。
一个主要的临床挑战是为每个患者获得有效的治疗策略或至少确定一个子集
可以从特定治疗中贝内的患者。由于每种结肠癌都有其独特的特征,
获得个性化的癌症治疗并找到一种定制治疗策略的方法是非常重要的,
根据每个人的特征,包括种族,性别,遗传因素,免疫反应,
变化.
最近,定量和系统药理学(QSP)已普遍用于发现,验证,
测试药物。QSP模型是一个微分方程系统,它模拟了
药物和生物系统。这些数学模型提供了一种综合的“系统级”方法,
确定药物的作用机制,并找到新的方法来改变复杂的细胞网络与单核细胞
或联合治疗以获得有效的治疗。由于QSP模型是一个复杂的非线性系统,
由于方程中有许多未知参数,估计模型参数的值是极其困难的。
现有的QSP模型参数估计方法通常使用来自不同来源的组合数据,
而不是一个单一的数据集。这些数据集通常通过各种生物实验获得,
体外和体内动物研究,从而使得QSP模型难以用于个性化治疗。
据我们所知,尚未开发出用于个性化结肠癌治疗的QSP模型。
在这个项目中,我们提出了一个独特的方法来开发一个数据驱动的QSP软件,以建议有效的
基于来自原发性肿瘤样品的基因表达数据对每个患者进行治疗。自签署
肿瘤的主要特征,如免疫反应变异,可以在基因表达谱中找到。
在原发性肿瘤中,我们使用基因表达数据作为输入。我们开发了一个创新的框架,
采用数据科学,数学和统计方法的组合,以获得个性化的结肠癌
治疗我们采用新的反问题技术来估计模型的参数值,
统计方法进行敏感性分析。我们将利用这些技术提出一种最佳治疗方案
为每位患者制定治疗策略,并预测治疗方案的有效性。该模型还可能表明,
在某些患者的低效率情况下的替代疗法。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data-Driven Mathematical Model of Osteosarcoma.
- DOI:10.3390/cancers13102367
- 发表时间:2021-05-14
- 期刊:
- 影响因子:5.2
- 作者:Le T;Su S;Kirshtein A;Shahriyari L
- 通讯作者:Shahriyari L
A Fokker-Planck Framework for Parameter Estimation and Sensitivity Analysis in Colon Cancer.
结肠癌参数估计和敏感性分析的福克-普朗克框架。
- DOI:10.1063/5.0100741
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Roy,S;Pal,S;Manoj,A;Kakarla,S;Padilla,JV;Alajmi,M
- 通讯作者:Alajmi,M
Investigating Optimal Chemotherapy Options for Osteosarcoma Patients through a Mathematical Model.
- DOI:10.3390/cells10082009
- 发表时间:2021-08-06
- 期刊:
- 影响因子:6
- 作者:Le T;Su S;Shahriyari L
- 通讯作者:Shahriyari L
Data Driven Mathematical Model of Colon Cancer Progression.
- DOI:10.3390/jcm9123947
- 发表时间:2020-12-05
- 期刊:
- 影响因子:3.9
- 作者:Kirshtein A;Akbarinejad S;Hao W;Le T;Su S;Aronow RA;Shahriyari L
- 通讯作者:Shahriyari L
Investigating the spatial interaction of immune cells in colon cancer.
- DOI:10.1016/j.isci.2023.106596
- 发表时间:2023-05-19
- 期刊:
- 影响因子:5.8
- 作者:Mirzaei, Navid Mohammad;Hao, Wenrui;Shahriyari, Leili
- 通讯作者:Shahriyari, Leili
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUVRA PAL其他文献
SUVRA PAL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUVRA PAL', 18)}}的其他基金
Using Machine Learning to Improve the Predictive Accuracy of Disease Cure
使用机器学习提高疾病治疗的预测准确性
- 批准号:
10654253 - 财政年份:2023
- 资助金额:
$ 15.99万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 15.99万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 15.99万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 15.99万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 15.99万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 15.99万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 15.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 15.99万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 15.99万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 15.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 15.99万 - 项目类别:
Studentship