Sensory mechanisms of manual dexterity and their application to neuroprosthetics
手灵巧度的感觉机制及其在神经修复学中的应用
基本信息
- 批准号:10397682
- 负责人:
- 金额:$ 115.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2029-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAlgorithmsAmputeesAnimalsBehaviorBiomimeticsBionicsBrainCodeComputer Vision SystemsDeafferentation procedureDevelopmentE-learningElectric StimulationEngineeringEvaluationEventHandIntuitionLearningLimb structureLocationManualsMeasuresMolecular ConformationMonkeysMotorMovementNeuraxisNeuronsOutputPatternPeripheral Nerve StimulationPeripheral NervesPersonsPostureProcessProprioceptionQuadriplegiaSensoryShapesSignal TransductionSkinSomatosensory CortexStereognosisStimulusSurfaceTactileTimeTouch sensationWorkdeep learningdexteritygraspneuroprosthesisneurotransmissionnovelobject shaperelating to nervous systemresponsesensorsensory feedbacksensory mechanismsomatosensory
项目摘要
PROJECT SUMMARY
Manual behavior requires sensory signals from the hand, both tactile and proprioceptive, as evidenced by the
severe deficits that result from somatosensory deafferentation. Three aspects of the sensory component of hand
sensory function are poorly understood. First, the neural basis of touch has been studied almost exclusively with
stimuli delivered passively to the skin, precluding any understanding of how tactile signals are modulated by and
interact with motor commands. Second, proprioceptive signals carry information not only about the time-varying
conformation of the hand, but also about manually applied forces, but proprioceptive representations of force
are poorly understood. Third, stereognosis – the sense of the three-dimensional shape of objects acquired from
sensory signals arising from the hand – implies the integration of tactile and proprioceptive signals, a process
about which little is known. The study of active touch, hand proprioception, and stereognosis has been hindered
by technical obstacles. Indeed, characterizing self-generated contact with objects has been difficult or
impossible, as has tracking hand movements with sufficient precision. To overcome these obstacles, my team
has developed an apparatus that allows us to measure contact events – with a sensor sheet covering the object’s
surface – and track time-varying hand postures – using deep learning-based computer vision – with
unprecedented precision as animals interact with objects. We then characterize the responses at every stage
along the somatosensory neuraxis, from peripheral nerve through cortex. This novel experimental set up will
allow us to study the neural basis of somatosensation – particularly as it relates to manual dexterity – under
ecologically valid conditions.
In a related line of inquiry, we leverage what we learn about sensory processing to restore the sense of touch to
bionic hands. In brief, we develop algorithms to convert the output of sensors on the bionic hand into patterns of
electrical stimulation of the peripheral nerve (for amputees) or of somatosensory cortex (for people with
tetraplegia) to evoke meaningful tactile percepts. I am one of the principal architects of the biomimetic approach
to artificial touch, which posits that encoding algorithms that mimic natural neural signals will give rise to more
intuitive tactile percepts, thereby endowing bionic hands with greater dexterity. Our work on artificial touch
comprises three components: evaluation of the perceptual correlates of electrical stimulation, development of
sensory encoding algorithms, and assessment of the benefits of artificial touch to manual behavior. The interplay
of the basic scientific results and neural engineering efforts will result in more naturalistic artificial touch for brain-
controlled bionic hands.
项目摘要
手动行为需要来自手的感觉信号,包括触觉和本体感受,如由
由躯体感觉神经传入障碍引起的严重缺陷。手的感觉成分的三个方面
感觉功能知之甚少。首先,触觉的神经基础几乎完全被研究,
被动地传递到皮肤的刺激,排除了对触觉信号如何被调制的任何理解,
与运动指令互动第二,本体感受信号不仅携带关于时变
手的构造,也是关于手动施加的力,但力的本体感受表征
我们对此知之甚少。第三,立体感-物体的三维形状的感觉,
感觉信号来自手-意味着触觉和本体感受信号的整合,
对此知之甚少。主动触觉、手本体感觉和立体感的研究一直受到阻碍
技术障碍。事实上,描述自我产生的与物体的接触是困难的,
这是不可能的,因为有足够的精度跟踪手的运动。为了克服这些障碍,我的团队
已经开发出一种设备,使我们能够测量接触事件-与传感器片覆盖的对象的
表面和跟踪时变的手部姿势-使用基于深度学习的计算机视觉-
动物与物体互动时前所未有的精确度。然后我们描述每个阶段的反应
沿着躯体感觉神经轴,从外周神经穿过皮层。这个新的实验装置将
使我们能够研究躯体感觉的神经基础-特别是当它与手的灵活性有关时-
生态条件良好。
在相关的调查中,我们利用我们对感觉处理的了解来恢复触觉,
仿生手简而言之,我们开发了将仿生手上传感器的输出转换为
电刺激外周神经(对于截肢者)或躯体感觉皮层(对于患有
四肢瘫痪)以唤起有意义的触觉感知。我是仿生方法的主要设计师之一
到人工触摸,它假定模拟自然神经信号的编码算法将产生更多的
直观的触觉感知,从而赋予仿生手更大的灵活性。我们在人工触摸方面的工作
包括三个部分:电刺激的感知相关性的评估,
感官编码算法,以及评估人工触摸对手动行为的好处。的相互作用
基础科学成果和神经工程的努力将为大脑带来更自然的人工触摸-
控制仿生手
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SLIMAN BENSMAIA其他文献
SLIMAN BENSMAIA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SLIMAN BENSMAIA', 18)}}的其他基金
The interplay between kinematic and force representations in motor and somatosensory cortices during reaching, grasping, and object transport
伸手、抓握和物体运输过程中运动和体感皮层运动学和力表征之间的相互作用
- 批准号:
10357463 - 财政年份:2022
- 资助金额:
$ 115.23万 - 项目类别:
Sensory mechanisms of manual dexterity and their application to neuroprosthetics
手灵巧度的感觉机制及其在神经修复学中的应用
- 批准号:
10240106 - 财政年份:2021
- 资助金额:
$ 115.23万 - 项目类别:
Biomimetic Somatosensory Feedback through Intracorticalmicrostimulation
通过皮质内微刺激的仿生体感反馈
- 批准号:
9277595 - 财政年份:2016
- 资助金额:
$ 115.23万 - 项目类别:
Hand proprioception and sensorimotor interplay
手本体感觉和感觉运动相互作用
- 批准号:
8619673 - 财政年份:2013
- 资助金额:
$ 115.23万 - 项目类别:
Hand proprioception and sensorimotor interplay
手本体感觉和感觉运动相互作用
- 批准号:
8483746 - 财政年份:2013
- 资助金额:
$ 115.23万 - 项目类别:
Hand proprioception and sensorimotor interplay
手本体感觉和感觉运动相互作用
- 批准号:
8811486 - 财政年份:2013
- 资助金额:
$ 115.23万 - 项目类别:
Hand proprioception and sensorimotor interplay
手本体感觉和感觉运动相互作用
- 批准号:
9035440 - 财政年份:2013
- 资助金额:
$ 115.23万 - 项目类别:
Cortical Processing of Tactual Spacial Information
触觉空间信息的皮层处理
- 批准号:
8043538 - 财政年份:1983
- 资助金额:
$ 115.23万 - 项目类别:
Cortical Processing of Tactual Spacial Information
触觉空间信息的皮层处理
- 批准号:
7559654 - 财政年份:1983
- 资助金额:
$ 115.23万 - 项目类别:
Cortical Processing of Tactual Spacial Information
触觉空间信息的皮层处理
- 批准号:
7454067 - 财政年份:1983
- 资助金额:
$ 115.23万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 115.23万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 115.23万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 115.23万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 115.23万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 115.23万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 115.23万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 115.23万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 115.23万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 115.23万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 115.23万 - 项目类别:
Continuing Grant