The impact of the physical microenvironment on trophoblast function

物理微环境对滋养层功能的影响

基本信息

  • 批准号:
    10398826
  • 负责人:
  • 金额:
    $ 4.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

The placenta is a critical organ that develops during pregnancy to allow the fetus to obtain nutrients and remove waste. The placenta acts as both a gatekeeper and an endocrine organ; two functions which are vital for a healthy pregnancy. However, how the placenta acts after perturbations of the system is not well known due to ethical concerns regarding obtaining tissue throughout all stages of pregnancy and poor in vitro or ex vivo systems that lack the level of control and physiological relevance needed. In preliminary studies, we have successfully made an in vitro microfluidic placenta model that allows for culture of three different cell types (trophoblast, fibroblasts, and endothelial cells) within natural protein gels. Microfluidic channels incorporate shear stress into the model and the tri-cell culture allows for cell-cell communication which have both been shown to be vital for physiologically relevant trophoblast phenotype. Cells can be cultured on natural substrates derived from human placenta with (1) ease, (2) in parallel, (3) with tight control, and (4) without the need for technical expertise in microfluidics. The model can easily be updated to study many mechanistic and fundamental properties of the healthy or dysregulated placenta. One disease that can cause complications during pregnancy, preeclampsia (PE), is associated with disrupted placentation from limited remodeling of the uterine wall; a process vital to ensure healthy placental tissue, proper oxygen concentration, and appropriate amount of shear stress within the placenta. Due to the lack of uterine remodeling, placental extracellular matrix (ECM) is stiffened via fibrosis, oxygen tension is lowered, and shear stress is increased. We hypothesize that these physical microenvironmental cues within the placenta cause disrupted trophoblast function that can be mechanistically examined in our novel microfluidic placenta model. In Aim 1 we will alter our microfluidic device in order to test how ECM dysregulation alters trophoblast function. We will make stromal layers of healthy or pathogenic stiffnesses from both collagen-I and human placenta derived ECM. Placental derived ECM will enable us to test how the full milieu of the placenta ECM impacts trophoblast function, while the collagen-I ECM will allow for tighter control of the environment. In Aim 2 we will test the closely tied relationship between oxygen tension and shear stress on trophoblast function. Devices will be cultured at healthy or pathogenic oxygen tension and shear stress to elucidate if their stimuli are synergistic. These studies will demonstrate the ease of our system in being able to control the microphysical properties of the system for elucidation of mechanistic properties of multi-cell models of the placenta.
胎盘是一个重要的器官,在怀孕期间发育,让胎儿获得营养和清除废物。胎盘既是一个看门人,也是一个内分泌器官;这两个功能对健康怀孕至关重要。然而,胎盘在系统扰动后如何起作用并不为人所知,这是由于关于在整个妊娠的所有阶段获得组织的伦理问题以及缺乏所需的控制水平和生理相关性的不良体外或离体系统。在初步研究中,我们已经成功地制作了一个体外微流体胎盘模型,该模型允许在天然蛋白质凝胶内培养三种不同的细胞类型(滋养层细胞、成纤维细胞和内皮细胞)。微流体通道将剪切应力并入模型中,并且三细胞培养物允许细胞-细胞通信,这两者已被证明对于生理学相关的滋养层表型至关重要。细胞可以在来源于人胎盘的天然基质上培养,(1)容易,(2)平行,(3)严格控制,(4)不需要微流体技术专业知识。该模型可以很容易地更新,以研究健康或失调胎盘的许多机械和基本特性。一种可能导致妊娠期间并发症的疾病,先兆子痫(PE),与子宫壁有限重塑导致的胎盘破裂有关;这是一个对确保健康胎盘组织,适当氧浓度和胎盘内适量剪切应力至关重要的过程。由于缺乏子宫重塑,胎盘细胞外基质(ECM)通过纤维化变硬,氧张力降低,剪切应力增加。我们假设胎盘内的这些物理微环境线索导致滋养层功能中断,这可以在我们的新型微流体胎盘模型中进行机械检查。在目标1中,我们将改变我们的微流体装置,以测试ECM失调如何改变滋养层功能。我们将从I型胶原和人胎盘来源的ECM中制备健康或致病性硬度的基质层。胎盘来源的ECM将使我们能够测试胎盘ECM的完整环境如何影响滋养层功能,而胶原-I ECM将允许更严格地控制环境。在目标2中,我们将测试氧张力和剪切应力对滋养层功能的密切关系。将在健康或致病性氧张力和剪切应力下培养器械,以阐明其刺激是否具有协同作用。这些研究将证明我们的系统易于控制系统的微物理性质,以阐明胎盘多细胞模型的机械性质。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Katherine Nelson其他文献

Katherine Nelson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Katherine Nelson', 18)}}的其他基金

The impact of the physical microenvironment on trophoblast function
物理微环境对滋养层功能的影响
  • 批准号:
    10611430
  • 财政年份:
    2021
  • 资助金额:
    $ 4.68万
  • 项目类别:

相似海外基金

How angiogenic factor induces immunosuppressive cells to tumor microenvironment
血管生成因子如何诱导免疫抑制细胞进入肿瘤微环境
  • 批准号:
    22KJ0818
  • 财政年份:
    2023
  • 资助金额:
    $ 4.68万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Validation of Adenylosuccinate as a Novel Endogenous Pro-Angiogenic Factor in the Brain
腺苷琥珀酸作为大脑中新型内源性促血管生成因子的验证
  • 批准号:
    10711027
  • 财政年份:
    2021
  • 资助金额:
    $ 4.68万
  • 项目类别:
Validation of Adenylosuccinate as a Novel Endogenous Pro-Angiogenic Factor in the Brain
腺苷琥珀酸作为大脑中新型内源性促血管生成因子的验证
  • 批准号:
    10297199
  • 财政年份:
    2021
  • 资助金额:
    $ 4.68万
  • 项目类别:
Validation of Adenylosuccinate as a Novel Endogenous Pro-Angiogenic Factor in the Brain
腺苷琥珀酸作为大脑中新型内源性促血管生成因子的验证
  • 批准号:
    10625314
  • 财政年份:
    2021
  • 资助金额:
    $ 4.68万
  • 项目类别:
Validation of Adenylosuccinate as a Novel Endogenous Pro-Angiogenic Factor in the Brain
腺苷琥珀酸作为大脑中新型内源性促血管生成因子的验证
  • 批准号:
    10405070
  • 财政年份:
    2021
  • 资助金额:
    $ 4.68万
  • 项目类别:
Physiological role of anti-angiogenic factor thrombospondin in the regulation of endometrial function during early pregnancy in cattle
抗血管生成因子血小板反应蛋白在牛妊娠早期子宫内膜功能调节中的生理作用
  • 批准号:
    20K06385
  • 财政年份:
    2020
  • 资助金额:
    $ 4.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation of lymphangiogenic regulatory mechanism of angiogenic factor CCN2 through tumor-associated macrophage
阐明血管生成因子CCN2通过肿瘤相关巨噬细胞的淋巴管生成调节机制
  • 批准号:
    17K11866
  • 财政年份:
    2017
  • 资助金额:
    $ 4.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation of vascular stabilization mechanism by anti-angiogenic factor vasohibin-1
抗血管生成因子 vasohibin-1 阐明血管稳定机制
  • 批准号:
    15K20874
  • 财政年份:
    2015
  • 资助金额:
    $ 4.68万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
angiogenic therapy for cerebral infarction with anti^sense homology derived peptide targeting angiogenic factor
靶向血管生成因子的反义同源肽治疗脑梗死
  • 批准号:
    15K15523
  • 财政年份:
    2015
  • 资助金额:
    $ 4.68万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
The development of the anti-angiogenic factor VEGF-A165b quantification methods for cardiovascular disease.
心血管疾病抗血管生成因子 VEGF-A165b 定量方法的开发。
  • 批准号:
    26860367
  • 财政年份:
    2014
  • 资助金额:
    $ 4.68万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了