Signaling Mechanisms and Cellular Functions of a Ciliopathy-Associated Protein Kinase
纤毛病相关蛋白激酶的信号传导机制和细胞功能
基本信息
- 批准号:10398240
- 负责人:
- 金额:$ 33.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAdenylate CyclaseAffectAnimal ModelApicalBindingC-terminalCell modelCell physiologyCell surfaceCellsChemicalsCiliaCilium MicrotubuleClinicalCuesCyclic AMPCyclic AMP-Dependent Protein KinasesDNA Sequence AlterationDataDefectDevelopmentDiseaseEnzymesEpilepsyEsthesiaEventExhibitsFunctional disorderGenesGenetic DiseasesGenetic EngineeringGrowth FactorHomeostasisHumanHuman GeneticsImpairmentKnowledgeLengthLinkMAP Kinase GeneMammalian CellMediatingMicrotubulesMolecularMotorMusMutationOrganellesOutcomePP5 protein-serine-threonine phosphatasePathogenicityPerinatal mortality demographicsPhenotypePhosphoric Monoester HydrolasesPhosphorylationPhosphotransferasesPlayPoint MutationProductionProtein DephosphorylationProtein KinaseProtein-Serine-Threonine KinasesProteinsRegulationReportingResearchResearch ProposalsRoleScaffolding ProteinSensorySignal PathwaySignal TransductionSiteStructureSurfaceTestingTissuesVariantYin-Yangbasebody systemcell motilityciliopathycilium biogenesishuman diseasein vivoinnovationkataninkinetosomeloss of functionmutantnovelnull mutationorgan growthresponsesmoothened signaling pathwaytissue-factor-pathway inhibitor 2
项目摘要
Project Summary
Ciliopathies comprise an expanding group of human disorders associated with genetic mutations causing cilia
dysfunction. Cilia can be divided into motile and non-motile (primary) forms. The primary cilium is a microtubule
(MT)-based organelle that protrudes from the apical surface of nearly every mammalian cell and plays a critical
role in chemical sensation, signal transduction, and control of various cellular functions. To date, there are still
major gaps in our knowledge about the dynamic structure and function of the primary cilium, and the
underlying molecular basis of ciliopathies. Our research proposal is focused on elucidating the molecular
mechanism by which pathogenic mutations in the human CILK1 (ciliogenesis associated kinase 1) gene cause
ciliopathies. CILK1 encodes a serine/threonine protein kinase that negatively regulates cilia length and
ciliogenesis. Three significant questions about CILK1 remain to be addressed. First, what is the identify of
CILK1 substrates that relate to its ciliopathy phenotype? Our data challenged the current view that MT-
associated motor KIF3A is the CILK1 substrate responsible for the ciliopathy phenotype by showing that
disrupting CILK1 phosphorylation of KIF3A in vivo did not reproduce CILK1 mutant phenotype. In this
continuation project, we hypothesize that CILK1 suppresses ciliogenesis by phosphorylating a novel MT-
associated ciliary protein and promoting MT disassembly. Second, how is CILK1 activity regulated in the
primary cilium? CILK1 requires phosphorylation of its MAPK-like TDY motif for full activation, but growth factors
have little stimulatory effect on its activity. Our new preliminary data shows that reducing intracellular cAMP
stimulates CILK1. We hypothesize that CILK1 activity is negatively regulated by ciliary cAMP-dependent
phosphorylation. Third, how CILK1 human disease variants impact cilia function and signaling and tissue
development? We observed human disease variants in the non-catalytic C-terminal domain (CTD) of CILK1
that retain CILK1 catalytic activity but produce a loss-of-function effect on suppression of ciliogenesis. We
hypothesize that CILK1 variants in the CTD perturb CILK1 localization and substrate recognition, thereby
compromising its ability to suppress ciliogenesis. We propose three specific aims to test these hypotheses.
Aim 1 will determine how CILK1 signals through a novel signaling pathway to control cilia length and
ciliogenesis. Aim 2 will determine how cAMP inhibits CILK1 to elongate cilia and promote ciliogenesis. Aim 3
will determine the impact of CILK1 pathogenic variants on substrate phosphorylation, cilia function, Hedgehog
signaling, and tissue development. The significance of this project derives from human ciliopathies that have
an expanding disease spectrum with devastating clinical outcomes. Our studies are innovative in using novel
genetically engineered animal and cell models to elucidate new mechanisms that control cilia function and
signaling. Our research will exert strong impact on basic knowledge about the primary cilium and significantly
advance our understanding of the disease mechanisms underlying human ciliopathies.
项目概要
纤毛病包括一组不断扩大的与引起纤毛的基因突变相关的人类疾病
功能障碍。纤毛可分为运动型和非运动型(初级)形式。初级纤毛是微管
基于 MT(MT)的细胞器,从几乎每个哺乳动物细胞的顶端表面突出,并发挥着关键作用
在化学感觉、信号转导和各种细胞功能的控制中发挥作用。迄今为止,仍有
我们对初级纤毛的动态结构和功能的认识存在重大差距,
纤毛病的潜在分子基础。我们的研究计划的重点是阐明分子
人类 CILK1(纤毛发生相关激酶 1)基因致病突变的机制
纤毛病。 CILK1 编码丝氨酸/苏氨酸蛋白激酶,可负向调节纤毛长度和
纤毛发生。关于 CILK1 的三个重要问题仍有待解决。首先,什么是身份
与其纤毛病表型相关的 CILK1 底物?我们的数据挑战了当前的观点,即 MT-
相关运动 KIF3A 是负责纤毛病表型的 CILK1 底物,表明
在体内破坏 KIF3A 的 CILK1 磷酸化不会重现 CILK1 突变表型。在这个
在后续项目中,我们假设 CILK1 通过磷酸化一种新型 MT- 来抑制纤毛发生
相关纤毛蛋白并促进 MT 分解。其次,CILK1的活性是如何被调控的?
初级纤毛? CILK1 需要对其 MAPK 样 TDY 基序进行磷酸化才能完全激活,但生长因子
对其活性影响不大。我们新的初步数据表明,减少细胞内 cAMP
刺激 CILK1。我们假设 CILK1 活性受到睫状体 cAMP 依赖性的负调节
磷酸化。第三,CILK1人类疾病变异如何影响纤毛功能和信号传导以及组织
发展?我们观察到 CILK1 非催化 C 端结构域 (CTD) 中的人类疾病变异
保留 CILK1 催化活性,但会产生抑制纤毛发生的功能丧失效应。我们
假设 CTD 中的 CILK1 变异扰乱了 CILK1 定位和底物识别,从而
损害其抑制纤毛发生的能力。我们提出三个具体目标来检验这些假设。
目标 1 将确定 CILK1 如何通过新的信号通路发出信号来控制纤毛长度和
纤毛发生。目标 2 将确定 cAMP 如何抑制 CILK1 以延长纤毛并促进纤毛发生。目标 3
将确定 CILK1 致病性变异对底物磷酸化、纤毛功能、Hedgehog 的影响
信号传导和组织发育。该项目的重要性源于人类纤毛病
不断扩大的疾病谱,带来毁灭性的临床结果。我们的研究在使用新颖性方面具有创新性
基因工程动物和细胞模型,以阐明控制纤毛功能和
发信号。我们的研究将对初级纤毛的基础知识产生重大影响,并显着
增进我们对人类纤毛病潜在疾病机制的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zheng Fu其他文献
Zheng Fu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zheng Fu', 18)}}的其他基金
Signaling Mechanisms and Cellular Functions of a Ciliopathy-Associated Protein Kinase
纤毛病相关蛋白激酶的信号传导机制和细胞功能
- 批准号:
10210778 - 财政年份:2018
- 资助金额:
$ 33.27万 - 项目类别:
Signaling Mechanisms and Cellular Functions of a Ciliopathy-Associated Protein Kinase
纤毛病相关蛋白激酶的信号传导机制和细胞功能
- 批准号:
10570983 - 财政年份:2018
- 资助金额:
$ 33.27万 - 项目类别:
Signaling Mechanisms and Cellular Functions of a Ciliopathy-associated Protein Kinase
纤毛病相关蛋白激酶的信号传导机制和细胞功能
- 批准号:
10799202 - 财政年份:2018
- 资助金额:
$ 33.27万 - 项目类别:
Oncogenic role of the ICK-GSK3beta signaling pathway
ICK-GSK3beta 信号通路的致癌作用
- 批准号:
9206147 - 财政年份:2016
- 资助金额:
$ 33.27万 - 项目类别:
Oncogenic role of the ICK-GSK3beta signaling pathway
ICK-GSK3beta 信号通路的致癌作用
- 批准号:
9023974 - 财政年份:2016
- 资助金额:
$ 33.27万 - 项目类别:
Role of Intestinal Cell Kinase in the Intestinal Epithelium
肠细胞激酶在肠上皮中的作用
- 批准号:
7990156 - 财政年份:2010
- 资助金额:
$ 33.27万 - 项目类别:
Role of Intestinal Cell Kinase in the Intestinal Epithelium
肠细胞激酶在肠上皮中的作用
- 批准号:
8316337 - 财政年份:2010
- 资助金额:
$ 33.27万 - 项目类别:
Role of Intestinal Cell Kinase in the Intestinal Epithelium
肠细胞激酶在肠上皮中的作用
- 批准号:
8075564 - 财政年份:2010
- 资助金额:
$ 33.27万 - 项目类别:
Role of Intestinal Cell Kinase in the Intestinal Epithelium
肠细胞激酶在肠上皮中的作用
- 批准号:
8471693 - 财政年份:2010
- 资助金额:
$ 33.27万 - 项目类别:
相似海外基金
Neuroendocrine regulation of energy metabolism: role of pituitary adenylate cyclase-activating polypeptide (PACAP) in the thermoregulatory cascade
能量代谢的神经内分泌调节:垂体腺苷酸环化酶激活多肽(PACAP)在温度调节级联中的作用
- 批准号:
RGPIN-2021-04040 - 财政年份:2022
- 资助金额:
$ 33.27万 - 项目类别:
Discovery Grants Program - Individual
Controlled Release of Pituitary Adenylate Cyclase Activating Polypeptide from a Hydrogel-Nanoparticle Delivery Vehicle for Applications in the Central Nervous System
从水凝胶-纳米粒子递送载体中控制释放垂体腺苷酸环化酶激活多肽,用于中枢神经系统的应用
- 批准号:
547124-2020 - 财政年份:2022
- 资助金额:
$ 33.27万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Controlled Release of Pituitary Adenylate Cyclase Activating Polypeptide from a Hydrogel-Nanoparticle Delivery Vehicle for Applications in the Central Nervous System
从水凝胶-纳米粒子递送载体中控制释放垂体腺苷酸环化酶激活多肽,用于中枢神经系统的应用
- 批准号:
547124-2020 - 财政年份:2021
- 资助金额:
$ 33.27万 - 项目类别:
Postgraduate Scholarships - Doctoral
Neuroendocrine regulation of energy metabolism: role of pituitary adenylate cyclase-activating polypeptide (PACAP) in the thermoregulatory cascade
能量代谢的神经内分泌调节:垂体腺苷酸环化酶激活多肽(PACAP)在温度调节级联中的作用
- 批准号:
RGPIN-2021-04040 - 财政年份:2021
- 资助金额:
$ 33.27万 - 项目类别:
Discovery Grants Program - Individual
The Molecular Mechanism of the Secretion of the Bacterial Toxin Adenylate Cyclase
细菌毒素腺苷酸环化酶分泌的分子机制
- 批准号:
451966 - 财政年份:2021
- 资助金额:
$ 33.27万 - 项目类别:
Operating Grants
The role of prefrontostriatal Pituitary Adenylate Cyclase Activating Polypeptide in excessive and compulsive ethanol drinking
前额纹状体垂体腺苷酸环化酶激活多肽在过量和强迫性乙醇饮酒中的作用
- 批准号:
10455587 - 财政年份:2020
- 资助金额:
$ 33.27万 - 项目类别:
The role of prefrontostriatal Pituitary Adenylate Cyclase Activating Polypeptide in excessive and compulsive ethanol drinking
前额纹状体垂体腺苷酸环化酶激活多肽在过量和强迫性乙醇饮酒中的作用
- 批准号:
10261394 - 财政年份:2020
- 资助金额:
$ 33.27万 - 项目类别:
Diagnosis and therapeutic effect of neurally mediated syncope (NMS) using fluctuation of adenylate cyclase activity
利用腺苷酸环化酶活性波动对神经介导性晕厥(NMS)的诊断和治疗效果
- 批准号:
20K08498 - 财政年份:2020
- 资助金额:
$ 33.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Pituitary adenylate cyclase-activating polypeptide 27 in the paraventricular thalamus and its projections: Role in ethanol drinking
室旁丘脑中的垂体腺苷酸环化酶激活多肽 27 及其预测:在乙醇饮用中的作用
- 批准号:
10380126 - 财政年份:2020
- 资助金额:
$ 33.27万 - 项目类别:
The role of prefrontostriatal Pituitary Adenylate Cyclase Activating Polypeptide in excessive and compulsive ethanol drinking
前额纹状体垂体腺苷酸环化酶激活多肽在过量和强迫性乙醇饮酒中的作用
- 批准号:
10662279 - 财政年份:2020
- 资助金额:
$ 33.27万 - 项目类别: