Development of Anatomical Patient Models to Facilitate MR-only Treatment Planning

开发患者解剖模型以促进纯 MR 治疗计划

基本信息

  • 批准号:
    10228842
  • 负责人:
  • 金额:
    $ 28.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Accurate delineation of targets and organs at risk for radiation therapy planning (RTP) remains a challenge due to the lack of soft tissue contrast in computed tomography (CT), the standard of care imaging for RTP. Radiation Oncology has addressed this limitation by registering magnetic resonance images (MRI) to CT datasets to take advantage of the superior soft tissue contrast afforded by MRI. MRI brings considerable value to RTP by improving delineation accuracy which, in turn, has enabled dose escalation to improve local control while maintaining or reducing normal tissue toxicities. However, the current integration of MRI as an adjunct to CT has significant drawbacks as it requires image registration and contour transfer between datasets. This process introduces systematic geometric uncertainties that persist throughout treatment and may compromise tumor control. Thus, we propose to translate MR-only RTP into clinical use, with the ultimate goal of improving patient outcomes accomplished via improved treatment plan design. MR-only RTP will eliminate redundant CT scans (reducing dose, patient time, and costs), streamline clinical efficiency, entirely circumvent registration uncertainties, and fully exploit the benefits of MRI for high-precision RTP. Yet, MRI is not routinely used alone for RTP, largely due to its known spatial distortions, lack of electron density, and inability to segment the bone needed for online image guidance and electron density mapping for dose calculation. The central hypothesis is that the innovative technologies that our multi-disciplinary academic/industrial (Henry Ford Health System/Philips Healthcare) collaboration develop will yield geometrically accurate patient models built from MRI data across several platforms/field strengths with CT-equivalent densities that can be used in confidence throughout the entire RTP workflow. In Aim 1, we will perform geometric distortion corrections, determine distortion variability with changing anatomy, benchmark the results in a novel modular phantom, and develop an image processing toolkit. In Aim 2, we will fully automate MR image segmentation in the brain and male/female pelvis to yield accurate synthetic CT patient models derived from novel MRI sequences, including provisions for metal implants, and benchmark the results in phantom. In Aim 3, we will conduct end-to-end testing to characterize the uncertainties in the MR-only RTP workflow. We will perform a virtual clinical trial of MR-only RTP for brain and male/female pelvis and compare to the standard of care. Final translation will include developing physician-physicist practice guidelines, end-user validation of all translational steps, and dissemination of image processing tools into the Radiation Oncology community. This research will systematically address the major challenges limiting MR-only RTP and lay the groundwork for multi-institutional clinical trials across MRI platforms. It will support future work related to MR-guided RT, functional MRI for biologically adaptive RT, and focal RT to areas of high tumor burden.
准确描绘靶和器官的危险放射治疗计划(RTP)仍然是一个挑战

项目成果

期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Application of Continuous Positive Airway Pressure for Thoracic Respiratory Motion Management: An Assessment in a Magnetic Resonance Imaging-Guided Radiation Therapy Environment.
  • DOI:
    10.1016/j.adro.2021.100889
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Liang E;Dolan JL;Morris ED;Vono J;Bazan LF;Lu M;Glide-Hurst CK
  • 通讯作者:
    Glide-Hurst CK
Task group 284 report: magnetic resonance imaging simulation in radiotherapy: considerations for clinical implementation, optimization, and quality assurance.
任务组284报告:放疗中的磁共振成像模拟:用于临床实施,优化和质量保证的考虑。
  • DOI:
    10.1002/mp.14695
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Glide-Hurst CK;Paulson ES;McGee K;Tyagi N;Hu Y;Balter J;Bayouth J
  • 通讯作者:
    Bayouth J
Quantifying inter-fraction cardiac substructure displacement during radiotherapy via magnetic resonance imaging guidance.
  • DOI:
    10.1016/j.phro.2021.03.005
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Morris ED;Ghanem AI;Zhu S;Dong M;Pantelic MV;Glide-Hurst CK
  • 通讯作者:
    Glide-Hurst CK
MRI-only treatment planning: benefits and challenges.
  • DOI:
    10.1088/1361-6560/aaaca4
  • 发表时间:
    2018-02-26
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Owrangi AM;Greer PB;Glide-Hurst CK
  • 通讯作者:
    Glide-Hurst CK
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carri Kaye Glide-Hurst其他文献

Carri Kaye Glide-Hurst的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carri Kaye Glide-Hurst', 18)}}的其他基金

Reducing cardiac toxicity with deep learning and MRI-guided radiation therapy
通过深度学习和 MRI 引导放射治疗减少心脏毒性
  • 批准号:
    10473755
  • 财政年份:
    2021
  • 资助金额:
    $ 28.55万
  • 项目类别:
Reducing cardiac toxicity with deep learning and MRI-guided radiation therapy
通过深度学习和 MRI 引导放射治疗减少心脏毒性
  • 批准号:
    10674519
  • 财政年份:
    2021
  • 资助金额:
    $ 28.55万
  • 项目类别:
Reducing cardiac toxicity with deep learning and MRI-guided radiation therapy
通过深度学习和 MRI 引导放射治疗减少心脏毒性
  • 批准号:
    10299368
  • 财政年份:
    2021
  • 资助金额:
    $ 28.55万
  • 项目类别:
Development of Anatomical Patient Models to Facilitate MR-only Treatment Planning
开发患者解剖模型以促进纯 MR 治疗计划
  • 批准号:
    9306036
  • 财政年份:
    2016
  • 资助金额:
    $ 28.55万
  • 项目类别:
Development of Anatomical Patient Models to Facilitate MR-only Treatment Planning
开发患者解剖模型以促进纯 MR 治疗计划
  • 批准号:
    9193976
  • 财政年份:
    2016
  • 资助金额:
    $ 28.55万
  • 项目类别:

相似海外基金

Conference: Rethinking how language background is described in academia and beyond
会议:重新思考学术界及其他领域如何描述语言背景
  • 批准号:
    2335912
  • 财政年份:
    2024
  • 资助金额:
    $ 28.55万
  • 项目类别:
    Standard Grant
ADVANCE Catalyst: Virtual Observatory of Culture for Equity in Academia at the University of Puerto Rico Rio Piedras (VoCEA)
ADVANCE Catalyst:波多黎各 Rio Piedras 大学学术界平等文化虚拟观察站 (VoCEA)
  • 批准号:
    2214418
  • 财政年份:
    2023
  • 资助金额:
    $ 28.55万
  • 项目类别:
    Standard Grant
Comprehensive development strategy of modality-specific "intellectual property" and "cultivation" with an eye on "pharmaceutical affairs" in academia drug discovery
学术界新药研发着眼“药事”的模式“知识产权”与“培育”综合发展策略
  • 批准号:
    23K02551
  • 财政年份:
    2023
  • 资助金额:
    $ 28.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Accelerating Research Advancement for Investigators Underrepresented in Academia
加速学术界代表性不足的研究人员的研究进展
  • 批准号:
    10746315
  • 财政年份:
    2023
  • 资助金额:
    $ 28.55万
  • 项目类别:
Planning: HBCU-UP: Strengthening Data Science Research Capacity and Education Programs through Academia-Industry Partnership
规划:HBCU-UP:通过学术界与工业界合作加强数据科学研究能力和教育计划
  • 批准号:
    2332161
  • 财政年份:
    2023
  • 资助金额:
    $ 28.55万
  • 项目类别:
    Standard Grant
From Academia to Business: Development of Novel Therapeutics Against HPV-Associated Cancer
从学术界到商界:针对 HPV 相关癌症的新型疗法的开发
  • 批准号:
    10813323
  • 财政年份:
    2023
  • 资助金额:
    $ 28.55万
  • 项目类别:
Academics4Rail: Building a community of railway scientific researchers and academia for ERJU and enabling a network of PhDs (academia teaming with industry)
Academys4Rail:为ERJU建立铁路科研人员和学术界社区并建立博士网络(学术界与工业界合作)
  • 批准号:
    10087488
  • 财政年份:
    2023
  • 资助金额:
    $ 28.55万
  • 项目类别:
    EU-Funded
Academics4Rail: Building a Community of Railway Scientific Researchers and Academia for ERJU and Enabling a Network of PhDs (Academia Teaming with Industry)
Academys4Rail:为二院建立铁路科研人员和学术界社区并启用博士网络(学术界与工业界合作)
  • 批准号:
    10102850
  • 财政年份:
    2023
  • 资助金额:
    $ 28.55万
  • 项目类别:
    EU-Funded
Exploring the overall picture of industry-academia-government collaboration: A spectrum of knowledge transfer through formal and informal channels
探索产学官合作的整体图景:通过正式和非正式渠道进行的一系列知识转移
  • 批准号:
    22K01692
  • 财政年份:
    2022
  • 资助金额:
    $ 28.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fostering Ethical Neurotechnology Academia-Industry Partnerships: A Stakeholder Engagement and Toolkit Development Project
促进道德神经技术学术界与工业界的伙伴关系:利益相关者参与和工具包开发项目
  • 批准号:
    10655632
  • 财政年份:
    2022
  • 资助金额:
    $ 28.55万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了