Objective Quantification of Neural Damage for Screening, Diagnosis and Monitoring of Glaucoma with Fundus Photographs
利用眼底照片客观量化神经损伤,用于青光眼筛查、诊断和监测
基本信息
- 批准号:10225458
- 负责人:
- 金额:$ 19.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AgreementArtificial IntelligenceBlindnessClinical TrialsComputerized Medical RecordConsumptionDataData SetDatabasesDevelopmentDiabetic RetinopathyDiagnosisDiagnosticDiseaseEarly DiagnosisExhibitsEyeEye diseasesFundusFundus photographyFutureGlaucomaHumanImaging technologyIndiaInvestigationLabelLatinoLos AngelesManualsMeasurementMedicalMethodsModelingMonitorNamesNatureOcular HypertensionOptical Coherence TomographyOutputPatientsPerformancePopulation StudyRaceReference StandardsRegistriesReproducibilityRiskScienceScreening procedureStructureSurveysTestingThickTimeTrainingValidationVisual impairmentalgorithm trainingclinical careconvolutional neural networkcostcost effectivedeep learningdeep learning algorithmdeep neural networkflexibilityhypertension treatmentintelligent algorithminterestlarge datasetslearning networklongitudinal databasenoveloptic nerve disorderpoint of carepopulation basedpredictive modelingprogramsracial diversityrelating to nervous systemretinal nerve fiber layerscreeningteleophthalmologytime usetool
项目摘要
PROJECT SUMMARY
Glaucoma is a progressive optic neuropathy and the leading cause of irreversible blindness in the world. As the
disease remains largely asymptomatic until late stages, there is a pressing need to develop affordable
approaches for screening before visual impairment occurs. Although sophisticated imaging technologies such
as Spectral domain-optical coherence tomography (SDOCT) can provide highly reproducible and accurate
quantitative assessment of glaucomatous damage, their application in widespread screening or non-specialized
settings is unfeasible, given the high cost and operator requirements. Fundus photography is a low-cost
alternative that has been used successfully in teleophthalmology programs. However, subjective human grading
of fundus photos for glaucoma is poorly reproducible and highly inaccurate, as gradings tend to largely over- or
underestimate damage. We propose a new paradigm for assessing glaucomatous damage by training a deep
learning (DL) convolutional neural network to provide quantitative estimates of the amount of neural damage
from fundus photographs. In our Machine-to-Machine (M2M) approach, we trained a DL network to analyze
fundus photos and predict quantitative measurements of glaucomatous damage provided by SDOCT, such as
retinal nerve fiber layer (RNFL) thickness and neuroretinal rim measurements. Our preliminary results showed
that the M2M predictions have very high correlation and agreement with the original SDOCT observations. This
provides an objective method to quantify neural damage in fundus photos without requiring human graders,
which could potentially be used for screening, diagnoses and monitoring in teleophthalmology and non-
specialized point-of-care settings. In this proposal, we aim at refining and validating the M2M model in suitable,
large datasets from population-based studies, electronic medical records, and clinical trial data. Our central
hypothesis is that the M2M approach will be more accurate than subjective human gradings in screening,
diagnosing, predicting and detecting longitudinal damage over time. In Aim 1, we will investigate the performance
of the M2M model to screen for glaucomatous damage using large datasets from 6 population-based studies:
Blue Mountains Eye Study, Los Angeles Latino Eye Study, Tema Eye Survey, Beijing Eye Study, Central India
Eye and Medical Study and the Ural Eye and Medical Study, which will provide data on over 25,000 subjects of
diverse racial groups. In Aim 2, we will investigate the ability of the M2M model to predict future development of
glaucoma in eyes of suspects using the data from the Ocular Hypertension Treatment Study (OHTS). In Aim 3,
we will investigate the ability of the M2M model in detecting glaucomatous progression over time using data from
the Duke Glaucoma Registry, a large database of longitudinal structure and function data in glaucoma with over
25,000 patients followed over time. If successful, this proposal will lead to a validated, inexpensive, and widely
applicable tool for screening, early diagnosis and monitoring of glaucoma, that could be applied under
population-based settings and also at non-specialized point-of-care settings.
项目摘要
青光眼是一种进行性视神经病变,是世界上不可逆性失明的主要原因。为
疾病在晚期之前基本上没有症状,迫切需要开发负担得起的
在视力损害发生之前进行筛查的方法。虽然先进的成像技术,
由于光谱域光学相干断层扫描(SDOCT)可以提供高度可重复和准确的
昏迷损害的定量评估,它们在广泛筛查或非专门筛查中的应用
由于成本高和运营商的要求,这种设置不可行。眼底照相是一种低成本的
替代方案已成功地用于远程眼科项目。然而,主观的人类评分
青光眼眼底照片的可重复性差,高度不准确,因为分级往往在很大程度上过度或
低估伤害。我们提出了一个新的范例,通过训练一个深层次的
学习(DL)卷积神经网络,以提供神经损伤量的定量估计
眼底照片在我们的机器对机器(M2M)方法中,我们训练了一个DL网络来分析
眼底照片,并预测由SDOCT提供的青光眼损伤的定量测量,例如
视网膜神经纤维层(RNFL)厚度和神经视网膜边缘测量。我们的初步结果显示
M2M预测与原始SDOCT观测具有非常高的相关性和一致性。这
提供了一种客观的方法来量化眼底照片中的神经损伤而不需要人类分级者,
其可潜在地用于远程眼科学和非眼科学中的筛查、诊断和监测。
专门的护理点设置。在这项提案中,我们的目标是完善和验证M2M模型,
来自基于人群的研究、电子病历和临床试验数据的大型数据集。我们的中央
假设M2M方法在筛选中比主观的人类分级更准确,
诊断、预测和检测纵向损伤。在目标1中,我们将研究性能
使用来自6项基于人群的研究的大型数据集,使用M2M模型筛选昏迷性损伤:
蓝山眼科研究、洛杉矶拉丁裔眼科研究、特马眼科调查、北京眼科研究、印度中部
眼科和医学研究和乌拉尔眼科和医学研究,将提供25,000多名受试者的数据,
不同的种族群体。在目标2中,我们将研究M2M模型预测未来发展的能力。
使用来自高眼压治疗研究(OHTS)的数据对可疑青光眼患者的眼睛进行评估。在目标3中,
我们将研究M2M模型在使用来自以下研究的数据检测随时间推移的昏迷进展中的能力:
杜克青光眼登记处是一个大型的青光眼纵向结构和功能数据数据库,
25,000名患者随时间进行随访。如果成功,该提案将导致一个有效的,廉价的,广泛的
适用于青光眼筛查、早期诊断和监测的工具,可在
基于人群的环境以及非专业护理点环境。
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improved Prediction of Perimetric Loss in Glaucomatous Eyes Using Latent Class Mixed Modeling.
使用潜在类混合建模改进青光眼眼视野损失的预测。
- DOI:10.1016/j.ogla.2023.05.003
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Swaminathan,SwarupS;Jammal,AlessandroA;Rao,JSunil;Medeiros,FelipeA
- 通讯作者:Medeiros,FelipeA
Comparison of 10-2 and 24-2 Perimetry to Diagnose Glaucoma Using OCT as an Independent Reference Standard.
使用 OCT 作为独立参考标准比较 10-2 和 24-2 视野检查诊断青光眼。
- DOI:10.1016/j.ogla.2022.08.017
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Onyekaba,Ndidi-AmakaE;Estrela,Tais;Naithani,Rizul;McCarthy,KayneM;Jammal,AlessandroA;Medeiros,FelipeA
- 通讯作者:Medeiros,FelipeA
Validation of Rates of Mean Deviation Change as Clinically Relevant End Points for Glaucoma Progression.
验证平均偏差变化率作为青光眼进展的临床相关终点。
- DOI:10.1016/j.ophtha.2022.12.025
- 发表时间:2023
- 期刊:
- 影响因子:13.7
- 作者:Medeiros,FelipeA;Jammal,AlessandroA
- 通讯作者:Jammal,AlessandroA
Rapid initial OCT RNFL thinning is predictive of faster visual field loss during extended follow-up in glaucoma.
- DOI:10.1016/j.ajo.2021.03.019
- 发表时间:2021-09
- 期刊:
- 影响因子:4.2
- 作者:Swaminathan SS;Jammal AA;Berchuck SI;Medeiros FA
- 通讯作者:Medeiros FA
Predicting Glaucoma Development With Longitudinal Deep Learning Predictions From Fundus Photographs.
- DOI:10.1016/j.ajo.2020.12.031
- 发表时间:2021-05
- 期刊:
- 影响因子:4.2
- 作者:Lee T;Jammal AA;Mariottoni EB;Medeiros FA
- 通讯作者:Medeiros FA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Felipe Medeiros其他文献
Felipe Medeiros的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Felipe Medeiros', 18)}}的其他基金
Objective Quantification of Neural Damage for Screening, Diagnosis and Monitoring of Glaucoma with Fundus Photographs
利用眼底照片客观量化神经损伤,用于青光眼筛查、诊断和监测
- 批准号:
10047364 - 财政年份:2020
- 资助金额:
$ 19.52万 - 项目类别:
The nGoggle: A portable brain-based device for assessment of visual function deficits
nGoggle:一种用于评估视觉功能缺陷的便携式脑基设备
- 批准号:
9918610 - 财政年份:2019
- 资助金额:
$ 19.52万 - 项目类别:
Diagnostic Innovations in Glaucoma Study (DIGS): Functional Impairment
青光眼研究 (DIGS) 的诊断创新:功能障碍
- 批准号:
8528610 - 财政年份:2011
- 资助金额:
$ 19.52万 - 项目类别:
Diagnostic Innovations in Glaucoma Study (DIGS): Functional Impairment
青光眼研究 (DIGS) 的诊断创新:功能障碍
- 批准号:
8327717 - 财政年份:2011
- 资助金额:
$ 19.52万 - 项目类别:
Diagnostic Innovations in Glaucoma Study (DIGS): Functional Impairment
青光眼研究 (DIGS) 的诊断创新:功能障碍
- 批准号:
8161130 - 财政年份:2011
- 资助金额:
$ 19.52万 - 项目类别:
Diagnostic Innovations in Glaucoma Study (DIGS): Functional Impairment
青光眼研究 (DIGS) 的诊断创新:功能障碍
- 批准号:
8915178 - 财政年份:2011
- 资助金额:
$ 19.52万 - 项目类别:
相似海外基金
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 19.52万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 19.52万 - 项目类别:
Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 19.52万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 19.52万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 19.52万 - 项目类别:
Standard Grant
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 19.52万 - 项目类别:
Discovery Projects
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 19.52万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 19.52万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 19.52万 - 项目类别:
EU-Funded
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 19.52万 - 项目类别:
Fellowship