Biomedical Computing and Visualization Tools for Computer-integrated Diagnostic and Therapeutic Data Science

用于计算机集成诊断和治疗数据科学的生物医学计算和可视化工具

基本信息

  • 批准号:
    10225327
  • 负责人:
  • 金额:
    $ 35.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

The move toward personalized medicine, in concert with the recent advances in computing, data acquisition, processing and interpretation, is transforming diagnostic and interventional medicine from a traditional artisanal craft based on clinicians’ experience into a discipline that relies on objective decision-making based on the integration of multi-dimension and multi-modal data from heterogeneous sources. Computer- integrated diagnostic and interventional data science encompasses the processing, analysis, and interpretation of images and signals to improve the quality of a diagnostic or therapeutic goal. Improvements result from helping clinicians better diagnose disease, predict clinical outcome, better plan, deliver and monitor therapy, as well as advance training and simulation. Despite advances in computer-integrated diagnosis the therapy during the past decade, there has been a delay in introducing large-scale data science techniques into diagnostic, and especially interventional medicine. Although these disciplines have been transformed by the emergence of digital imaging (i.e., histology, pathology, and microscopy), miniature cameras (i.e., endoscopy, and multi- modality medical imaging to “see” inside the human body, the seamless, wide-spread integration of computer- aided tools as part of the routine diagnostic and surgical environment has been slow. This delay has been attributed to the limited availability of diagnostic and interventional data science techniques that can robustly handle the size, diversity and dimensionality of the acquired data that must be manipulated, often in real time. Ongoing projects in my lab have focused on the development and validation of image-based computing, modeling, and visualization frameworks that 1) help clinicians quantify and track imaging biomarkers to diagnose and monitor disease progression, 2) identify and plan optimal therapeutic routes, and 3) guide, monitor, and deliver therapy under less invasive conditions. These tools have been developed and demonstrated primarily in the context of cardiac applications, orthopedic, lung, brain, and spine applications, in close collaborations with clinicians and industry partners. The long-term vision of the proposed program is to further advance computer-integrated diagnostic and therapeutic data science by continuing the development and validation of new techniques for biomedical computing and visualization. We will leverage our successes and extend our existing computing infrastructure to operate on a wider range of digital data. Their output will supply clinicians with the necessary visualization for diagnostic and therapeutic decision making across different tissues and organs. We will make the developed techniques available to the biomedical research and community whose research necessitates using image-based modeling, simulation, and visualization, as well as to clinician scientists who can promote their clinical translation. This research program will yield innovative biomedical computing and visualization tools that rely on standard-of-care biomedical data and cater to a broad range of minimally invasive diagnosis and therapy applications.
向个性化医疗的转变,与计算机、数据采集、 处理和解释,正在将诊断和介入医学从传统的 以临床医生的经验为基础的手工工艺成为一门依赖于客观决策的学科 多维、多模式的异构源数据集成研究。计算机- 综合诊断和介入数据科学包括处理、分析和解释 以提高诊断或治疗目标的质量。改进的结果是 帮助临床医生更好地诊断疾病、预测临床结果、更好地计划、提供和监测治疗,因为 以及高级训练和模拟。尽管在计算机集成诊断方面取得了进展,但在治疗期间 在过去的十年中,在将大规模数据科学技术引入诊断和分析方面一直存在延迟 尤其是介入医学。尽管这些学科已经因为 数字成像(即组织学、病理学和显微镜)、微型照相机(即内窥镜检查)和 医疗成像的形态,以“看到”人体内部,无缝,广泛的计算机集成- 辅助工具作为常规诊断和手术环境的一部分,一直进展缓慢。这一延迟已经被 归因于诊断和介入数据科学技术的可获得性有限,这些技术可以 处理必须经常实时处理的所获取数据的大小、多样性和维度。 我实验室正在进行的项目主要集中在基于图像的计算的开发和验证上, 建模和可视化框架,帮助临床医生量化和跟踪成像生物标记物 诊断和监测疾病进展,2)确定和计划最佳治疗路线,以及3)指导, 在侵入性较小的情况下进行监测和治疗。这些工具已经开发出来,并且 主要在心脏应用、整形外科、肺、脑和脊柱应用的背景下展示, 与临床医生和行业合作伙伴密切合作。拟议计划的长期愿景是 继续发展,进一步推进计算机综合诊疗数据科学 以及生物医学计算和可视化新技术的验证。我们将利用我们的成功 并扩展我们现有的计算基础设施,以处理更广泛的数字数据。他们的产量将 为临床医生提供诊断和治疗决策所需的可视化信息 不同的组织和器官。我们将把开发的技术用于生物医学研究和 社区的研究需要使用基于图像的建模、模拟和可视化,以及 给临床科学家,他们可以促进他们的临床翻译。这项研究计划将产生创新的成果 生物医学计算和可视化工具,依赖于标准护理生物医学数据,并满足 广泛的微创诊断和治疗应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cristian A Linte其他文献

Cristian A Linte的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cristian A Linte', 18)}}的其他基金

Biomedical Computing and Visualization Tools for Computer-integrated Diagnostic and Therapeutic Data Science
用于计算机集成诊断和治疗数据科学的生物医学计算和可视化工具
  • 批准号:
    9980421
  • 财政年份:
    2018
  • 资助金额:
    $ 35.77万
  • 项目类别:
Biomedical Computing and Visualization Tools for Computer-integrated Diagnostic and Therapeutic Data Science
用于计算机集成诊断和治疗数据科学的生物医学计算和可视化工具
  • 批准号:
    10455590
  • 财政年份:
    2018
  • 资助金额:
    $ 35.77万
  • 项目类别:
Biomedical Computing and Visualization Tools for Computer-integrated Diagnostic and Therapeutic Data Science
用于计算机集成诊断和治疗数据科学的生物医学计算和可视化工具
  • 批准号:
    9753287
  • 财政年份:
    2018
  • 资助金额:
    $ 35.77万
  • 项目类别:

相似海外基金

Systems Lipidomics tools and resources for biomedical research; LIPID MAPS.
用于生物医学研究的系统脂质组学工具和资源;
  • 批准号:
    MR/Y000064/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.77万
  • 项目类别:
    Research Grant
The Common Fund Knowledge Center (CFKC): providing scientifically valid knowledge from the Common Fund Data Ecosystem to a diverse biomedical research community.
共同基金知识中心(CFKC):从共同基金数据生态系统向多元化的生物医学研究社区提供科学有效的知识。
  • 批准号:
    10851461
  • 财政年份:
    2023
  • 资助金额:
    $ 35.77万
  • 项目类别:
1st year MSc (Interdisciplinary Biomedical Research). The student will be assigned to a PhD project prior to the 2nd year of study.
第一年理学硕士(跨学科生物医学研究)。
  • 批准号:
    2881457
  • 财政年份:
    2023
  • 资助金额:
    $ 35.77万
  • 项目类别:
    Studentship
1st year MSc (Interdisciplinary Biomedical Research). The student will be assigned to a PhD project prior to the 2nd year of study.
第一年理学硕士(跨学科生物医学研究)。
  • 批准号:
    2881508
  • 财政年份:
    2023
  • 资助金额:
    $ 35.77万
  • 项目类别:
    Studentship
1st year MSc (Interdisciplinary Biomedical Research). The student will be assigned to a PhD project prior to the 2nd year of study.
第一年理学硕士(跨学科生物医学研究)。
  • 批准号:
    2883713
  • 财政年份:
    2023
  • 资助金额:
    $ 35.77万
  • 项目类别:
    Studentship
Cryo-TEM for Biomedical Research
用于生物医学研究的冷冻透射电镜
  • 批准号:
    10629910
  • 财政年份:
    2023
  • 资助金额:
    $ 35.77万
  • 项目类别:
Training Biomedical Research Teams for Rigor and Reproducibility in Data Science
培训生物医学研究团队以确保数据科学的严谨性和可重复性
  • 批准号:
    10723223
  • 财政年份:
    2023
  • 资助金额:
    $ 35.77万
  • 项目类别:
1st year MSc (Interdisciplinary Biomedical Research). The student will be assigned to a PhD project prior to the 2nd year of study.
第一年理学硕士(跨学科生物医学研究)。
  • 批准号:
    2881331
  • 财政年份:
    2023
  • 资助金额:
    $ 35.77万
  • 项目类别:
    Studentship
1st year MSc (Interdisciplinary Biomedical Research). The student will be assigned to a PhD project prior to the 2nd year of study.
第一年理学硕士(跨学科生物医学研究)。
  • 批准号:
    2881518
  • 财政年份:
    2023
  • 资助金额:
    $ 35.77万
  • 项目类别:
    Studentship
Combining Separation, Digestion, and Ionization on a Mass Spectrometry Cartridge to Enable Biomedical Research on Proteoforms
在质谱柱上结合分离、消化和电离,以实现蛋白质形式的生物医学研究
  • 批准号:
    10637225
  • 财政年份:
    2023
  • 资助金额:
    $ 35.77万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了