Potassium transport by the KdpFABC complex
KdpFABC 复合体的钾转运
基本信息
- 批准号:10225328
- 负责人:
- 金额:$ 34.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:ATP HydrolysisATP phosphohydrolaseAddressAdoptedAffectAffinityAnimalsArchitectureBacteriaBindingBinding SitesBiochemicalBiological AssayBiophysicsCationsCell membraneCellsChemicalsCommunicationComplexCoupledCouplingCryoelectron MicroscopyCrystallizationCytoplasmElementsEnvironmentEvolutionExtracellular FluidFamilyFoodGrowthHomeostasisIngestionIonsKineticsLightMass Spectrum AnalysisMeasuresMembraneMembrane PotentialsMolecular ConformationMutagenesisMutationNa(+)-K(+)-Exchanging ATPaseNatureOperonOrganismOsmoregulationPathway interactionsPhosphoric Monoester HydrolasesPhosphorylationPhosphoserinePhylogenetic AnalysisPhysiologicalPlayPotassiumPotassium ChannelProcessPropertyProtonsPumpReactionRestRoleSerineStructureSystemTestingTransmembrane TransportX-Ray Crystallographybaseenzyme activityextracellularfallsinhibitor/antagonistmembermutantnovelpH Homeostasisparticleperiplasmplant fungi
项目摘要
Potassium was adopted by the earliest organisms as the most prevalent cation in the cytoplasm. Today, the K+
gradient across the plasma membrane is largely responsible for the resting potential of all cells and high
cytoplasmic K+ concentrations are essential for enzyme activity, osmoregulation and pH homeostasis. Animals
rely on Na+/K+-ATPase, which is a P-type ATPase to maintains an ~10-fold gradient in K+. Whereas animals
ingest K+ rich food and maintain homeostasis of extracellular fluids, plants, fungi and bacteria have to survive
in a wide range of environmental conditions which can include limitations in K+. These organisms have evolved
different K+ transport systems that are capable of generating gradients between 103 and 105. Transporters with
moderate K+ affinity are constitutively expressed and, under normal circumstances, are capable of maintaining
these gradients. In order to survive at very low K+ concentrations, however, bacteria have evolved a high-
affinity, inducible system that functions as a primary active transporter. In particular, the kdp operon is
expressed at micromolar K+ concentrations, producing a heterotetrameric membrane complex called KdpFABC
that uses ATP to pump K+ into the cell. This transport system represents an unprecedented partnership
between a channel-like subunit (KdpA) and a pump-like subunit (KdpB). The former belongs to the Superfamily
of K+ transporters and the latter belongs to the P-type ATPase family. As part of the Kdp complex, both
subunits have been repurposed relative to other members of their respective families. In particular, KdpB is a
P-type ATPase that does not pump, but rather that uses ATP-driven conformational changes to control KdpA.
KdpA has an architecture derived from K+ channels that has been adapted to move ions against an electro-
chemical potential. We recently solved the first crystal structure of the KdpFABC complex, which sets the stage
for characterizing the elements responsible for this process and for understanding communication and energy
coupling between the subunits. Based on this structure, we have developed specific hypotheses which will be
addressed through three specific aims. In Aim 1, we will use biochemical and biophysical assays to
characterize steps in the reaction cycle and to identify conditions for stabilizing specific reaction intermediates.
These assays will be used in conjunction with mutagenesis to identify the gates controlling transport through
KdpA and to address mechanisms by which they are coupled to ATP-driven changes in KdpB. In Aim 2, we will
use single-particle cryo-EM to solve structures of stabilized reaction intermediates in order to visualize the
structural elements that drive transport. In Aim 3, we will address our unexpected finding of an inhibitory
phosphoserine on KdpB. The first priority will be to minimize the level of phosphorylation either by
mutagenesis, phosphatase treatment or growth conditions; an active complex with minimal phosphorylation is
necessary to pursue the first two aims. In addition, we will explore our hypothesis for a physiological role of
serine phosphorylation to shut off Kdp activity once extracellular K+ concentrations are restored.
钾被最早的生物作为细胞质中最普遍的阳离子采用。今天,K+
跨质膜的梯度在很大程度上是所有细胞的静息潜力,高
细胞质K+浓度对于酶活性,渗透调节和pH稳态至关重要。动物
依靠Na+/K+-ATPase,它是P型ATPase,可在K+中保持约10倍的梯度。而动物
摄入K+丰富的食物并保持细胞外液体,植物,真菌和细菌的体内平衡
在各种环境条件下,可能包括K+中的限制。这些生物已经进化
能够在103到105之间产生梯度的不同K+传输系统。
中等的K+亲和力是组成型表达的,在正常情况下,能够维持
这些梯度。但是,为了在非常低的K+浓度下生存,细菌已经进化了
亲和力,诱导系统,起源于主要的活性转运蛋白。特别是,KDP操纵子是
以微摩尔K+浓度表达,产生一种称为KDPFABC的异常膜复合物
它使用ATP将K+泵入单元。该运输系统代表了前所未有的伙伴关系
在通道状的亚基(KDPA)和泵样亚基(KDPB)之间。前者属于超家族
K+转运蛋白和后者属于P型ATPase家族。作为KDP复合物的一部分
相对于其各自家庭的其他成员,该亚基已被重新利用。特别是,KDPB是
不泵送的P型ATPase,而是使用ATP驱动的构象更改来控制KDPA。
KDPA具有源自K+通道的建筑
化学潜力。我们最近解决了KDPFABC复合物的第一个晶体结构,该结构设置了阶段
为了表征负责此过程的要素,并了解沟通和能量
亚基之间的耦合。基于这种结构,我们开发了特定的假设
通过三个特定目标解决。在AIM 1中,我们将使用生化和生物物理测定法进行
表征反应周期中的步骤,并确定稳定特定反应中间体的条件。
这些测定将与诱变一起使用,以识别控制通过
KDPA并解决将它们与KDPB中ATP驱动的变化耦合的机制。在AIM 2中,我们将
使用单粒子冷冻EM求解稳定反应中间体的结构,以可视化
驱动运输的结构元素。在AIM 3中,我们将解决我们意外的抑制发现
KDPB上的磷serine。首要任务是将磷酸化水平最小化。
诱变,磷酸酶处理或生长条件;具有最小磷酸化的活性复合物是
追求前两个目标所必需的。此外,我们将探讨我们的假设
一旦恢复细胞外K+浓度,丝氨酸磷酸化以关闭KDP活性。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Crystal structure of the potassium-importing KdpFABC membrane complex.
- DOI:10.1038/nature22970
- 发表时间:2017-06-29
- 期刊:
- 影响因子:64.8
- 作者:Huang CS;Pedersen BP;Stokes DL
- 通讯作者:Stokes DL
Serine phosphorylation regulates the P-type potassium pump KdpFABC.
- DOI:10.7554/elife.55480
- 发表时间:2020-09-21
- 期刊:
- 影响因子:7.7
- 作者:Sweet ME;Zhang X;Erdjument-Bromage H;Dubey V;Khandelia H;Neubert TA;Pedersen BP;Stokes DL
- 通讯作者:Stokes DL
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David L. Stokes其他文献
Structure of the Calcium Pump from Sarcoplasmic Reticulum at 8 Å Resolution: Architecture of the Transmembrane Helices and Localization of the Binding Site for Thapsigargin
8 Å 分辨率下肌浆网钙泵的结构:跨膜螺旋的结构和毒胡萝卜素结合位点的定位
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:2.8
- 作者:
Peijun Zhang;Chikashi Toyoshima;K. Yonekura;G. Inesi;M. Green;David L. Stokes - 通讯作者:
David L. Stokes
Zinc-Induced Conformational Changes in the Cation Diffusion Facilitator YiiP
- DOI:
10.1016/j.bpj.2019.11.2468 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Maria L. Lopez;Akiko Koide;Lorena Novoa;Jose M Arguello;Shohei Koide;David L. Stokes - 通讯作者:
David L. Stokes
Mechanism of K<sup>+</sup> transport along the intersubunit tunnel of kdpFABC
- DOI:
10.1016/j.bpj.2022.11.2809 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Hridya Valia Madapally;David L. Stokes;Himanshu Khandelia - 通讯作者:
Himanshu Khandelia
Three-dimensional crystals of CaATPase from sarcoplasmic reticulum. Symmetry and molecular packing.
来自肌浆网的 CaATPase 三维晶体。
- DOI:
- 发表时间:
1990 - 期刊:
- 影响因子:3.4
- 作者:
David L. Stokes;N. Green - 通讯作者:
N. Green
Action and Inactivation of the Bacterial Potassium Pump KdpFABC
- DOI:
10.1016/j.bpj.2019.11.281 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Marie Sweet;Hediye Erdjument-Bromage;Thomas A. Neubert;David L. Stokes - 通讯作者:
David L. Stokes
David L. Stokes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David L. Stokes', 18)}}的其他基金
Molecular Mechanisms of Ion Transport - Equipment supplement
离子传输的分子机制 - 设备补充
- 批准号:
10798994 - 财政年份:2022
- 资助金额:
$ 34.14万 - 项目类别:
Metal Ion Transport by the Cation Diffusion Facilitator Family
阳离子扩散促进剂家族的金属离子传输
- 批准号:
10083216 - 财政年份:2019
- 资助金额:
$ 34.14万 - 项目类别:
Metal Ion Transport by the Cation Diffusion Facilitator Family
阳离子扩散促进剂家族的金属离子传输
- 批准号:
10592636 - 财政年份:2019
- 资助金额:
$ 34.14万 - 项目类别:
Metal Ion Transport by the Cation Diffusion Facilitator Family
阳离子扩散促进剂家族的金属离子传输
- 批准号:
10319967 - 财政年份:2019
- 资助金额:
$ 34.14万 - 项目类别:
High-throughput Pipeline for Electron Crystallography
电子晶体学高通量管道
- 批准号:
8313999 - 财政年份:2010
- 资助金额:
$ 34.14万 - 项目类别:
TRAINING PROGRAM IN MACROMOLECULAR STRUCTURE AND MECHANISM
大分子结构与机理培训项目
- 批准号:
8291301 - 财政年份:2010
- 资助金额:
$ 34.14万 - 项目类别:
相似海外基金
Inhibition or evasion of P-glycoprotein-mediated drug transport
抑制或逃避 P-糖蛋白介导的药物转运
- 批准号:
10568723 - 财政年份:2023
- 资助金额:
$ 34.14万 - 项目类别:
Targeting Energetics to Improve Outcomes in Hypertrophic Cardiomyopathy
靶向能量药物以改善肥厚型心肌病的预后
- 批准号:
10687401 - 财政年份:2022
- 资助金额:
$ 34.14万 - 项目类别:
Structure and function of mitochondrial Hsp60
线粒体 Hsp60 的结构和功能
- 批准号:
10406155 - 财政年份:2021
- 资助金额:
$ 34.14万 - 项目类别:
Integrating Stochasticity into Biomolecular Mechanisms: A New Direction for Biomolecular Modeling
将随机性整合到生物分子机制中:生物分子建模的新方向
- 批准号:
10277296 - 财政年份:2021
- 资助金额:
$ 34.14万 - 项目类别: