BOND: Benchmarking based on heterogeneous biOmedical Network and Deep learning novel drug-target associations

BOND:基于异构生物医学网络和深度学习新型药物靶标关联的基准测试

基本信息

  • 批准号:
    10227201
  • 负责人:
  • 金额:
    $ 0.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract The applicant’s goals are to develop the necessary skills to become an independent translational biomedical informatics researcher in the area of computational drug repurposing. Exploring novel drug-target interactions (DTI) plays a crucial role in drug development. In order to lower the overall costs and uncover more potential screening targets, computational (in silico) methods have become popular and are commonly applied to poly-pharmacology and drug repurposing. Although machine learning-based strategies have been studied for years, there is no standardized benchmark that provides large-scale training datasets as well as diverse evaluation tasks to test different methods. Furthermore, the existing methods suffer from remarkable limitations, where 1) results are often biased due to a lack of negative samples, 2) novel drug-target associations with new (or isolated) drugs/targets cannot be explored, and 3) the comprehensive topological structure cannot be captured by feature learning methods . Therefore, in the era of big data, the applicant proposes a study to tackle the challenges by achieving two aims. • Aim 1 (K99 Phase): Develop a large scale benchmark for evaluating drug-target prediction based on the generation of a multipartite network from heterogeneous biomedical datasets. • Aim 2 (R00 Phase): Adapt a deep learning model to build an accurate predictive model based on a novel feature learning algorithm that mines the multi-dimensional biomedical network (multipartite network). In the mentored phase, the applicant will integrate heterogeneous biomedical datasets and build a benchmark for evaluation of the drug-target prediction based on well-designed strategies. The applicant will receive training in standardization tools for data integration, tools, and skills for data management, evaluation methods for drug-target predictions, and state-of-the-art machine learning/deep learning methods in computer-aided pharmacology. Complementary didactic, intellectual, and professional training will help prepare the applicant for the R00 phase where he will develop a deep learning-based predictive model and multi-dimensional graph embedding methods for feature learning. Together, these novel studies will advance the current computational drug repurposing by providing 1) comprehensive benchmarking for testing and evaluation, and 2) a scalable and accurate predictive model based on a biomedical multi-partite network. The applicant will be mentored by senior, established investigators with substantial expertise in Semantic Web, computational biology, cancer genomics, drug development, and machine learning/deep learning. Importantly, this project will provide a foundation for the applicant to establish independent research programs in 1) computational drug repurposing in real cases, 2) investigation of the diverse hidden associations in system biology (e.g., associations between drugs, genetics, and diseases), and 3) precision medicine aimed applications leveraging biomedical knowledgebases and electronic health records.
项目总结/摘要 申请人的目标是发展必要的技能,成为独立的翻译生物医学 计算机药物再利用领域的信息学研究员。探索新型药物-靶标相互作用 (DTI)在药物开发中起着至关重要的作用。为了降低总成本,发掘更多潜力, 筛选目标,计算(计算机模拟)方法已变得流行,并通常应用于 多药理学和药物再利用。虽然基于机器学习的策略已经被研究了 多年来,没有一个标准化的基准可以提供大规模的训练数据集以及多样化的 评估任务,以测试不同的方法。此外,现有的方法具有显著的局限性, 其中,1)由于缺乏阴性样本,结果往往存在偏倚,2)新的药物靶点与新的 (or分离的)药物/靶不能被探索, 3)综合拓扑结构不能 通过特征学习方法捕获 .因此,在大数据时代,申请人提出了一项研究, 通过实现两个目标来应对挑战。 目标1(K99阶段):开发一个大规模的基准,用于评估药物靶点预测, 从异构生物医学数据集生成多部分网络。 ·目标2(R 00阶段):调整深度学习模型,基于新的预测模型构建准确的预测模型。 挖掘多维生物医学网络(多部网络)的特征学习算法。 在辅导阶段,申请人将整合异构生物医学数据集并建立基准 用于评估基于精心设计的策略的药物靶点预测。申请人将接受培训 在数据集成的标准化工具、数据管理的工具和技能、 药物靶点预测,以及计算机辅助的最先进的机器学习/深度学习方法 药理学补充教学,智力和专业培训将有助于申请人准备 在R 00阶段,他将开发基于深度学习的预测模型和多维图 特征学习的嵌入方法。总之,这些新的研究将推动目前的计算 通过提供1)全面的测试和评估基准,以及2)可扩展的 和基于生物医学多体网络的精确预测模型。 申请人将接受以下人员的指导: 在语义网、计算生物学、癌症等领域拥有丰富专业知识的资深研究人员 基因组学、药物开发和机器学习/深度学习。 重要的是,该项目将提供一个 申请人建立独立研究计划的基础, 1)计算药物再利用 真实的案例,2)系统生物学中各种隐藏关联的调查(例如,之间的关联 药物,遗传学和疾病),以及3)精准医学,旨在利用生物医学的应用 知识库和电子健康记录。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deep Denoising of Raw Biomedical Knowledge Graph From COVID-19 Literature, LitCovid, and Pubtator: Framework Development and Validation.
  • DOI:
    10.2196/38584
  • 发表时间:
    2022-07-06
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Jiang, Chao;Ngo, Victoria;Chapman, Richard;Yu, Yue;Liu, Hongfang;Jiang, Guoqian;Zong, Nansu
  • 通讯作者:
    Zong, Nansu
Computational drug repurposing based on electronic health records: a scoping review.
  • DOI:
    10.1038/s41746-022-00617-6
  • 发表时间:
    2022-06-14
  • 期刊:
  • 影响因子:
    15.2
  • 作者:
  • 通讯作者:
BETA: a comprehensive benchmark for computational drug-target prediction.
Leveraging Genetic Reports and Electronic Health Records for the Prediction of Primary Cancers: Algorithm Development and Validation Study.
  • DOI:
    10.2196/23586
  • 发表时间:
    2021-05-25
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Zong N;Ngo V;Stone DJ;Wen A;Zhao Y;Yu Y;Liu S;Huang M;Wang C;Jiang G
  • 通讯作者:
    Jiang G
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NANSU ZONG其他文献

NANSU ZONG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NANSU ZONG', 18)}}的其他基金

BOND: Benchmarking based on heterogeneous biOmedical Network and Deep learning novel drug-target associations
BOND:基于异构生物医学网络和深度学习新型药物靶标关联的基准测试
  • 批准号:
    10443949
  • 财政年份:
    2020
  • 资助金额:
    $ 0.83万
  • 项目类别:
BOND: Benchmarking based on heterogeneous biOmedical Network and Deep learning novel drug-target associations
BOND:基于异构生物医学网络和深度学习新型药物靶标关联的基准测试
  • 批准号:
    10054989
  • 财政年份:
    2020
  • 资助金额:
    $ 0.83万
  • 项目类别:

相似海外基金

Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
  • 批准号:
    LP170100311
  • 财政年份:
    2018
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
  • 批准号:
    1736326
  • 财政年份:
    2017
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
  • 批准号:
    375876714
  • 财政年份:
    2017
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
  • 批准号:
    8689532
  • 财政年份:
    2014
  • 资助金额:
    $ 0.83万
  • 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
  • 批准号:
    1329780
  • 财政年份:
    2013
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
  • 批准号:
    1329745
  • 财政年份:
    2013
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了