Quantitative PET Imaging for Oncologic Immune Response Prediction

用于肿瘤免疫反应预测的定量 PET 成像

基本信息

  • 批准号:
    10226861
  • 负责人:
  • 金额:
    $ 24.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Abstract Immune checkpoint inhibitors have markedly improved overall survival in a number of cancers, which has in turn sparked tremendous scientific and financial investment into further expansion of this treatment paradigm. Currently, however, the benefits of immunotherapy have only been realized in a minority of patients. Further complicating the issue, many immunotherapies carry risks of severe adverse immune events, and methods to detect therapeutic efficacy such as anatomical staging and 18F-FDG PET imaging are confounded by the potential presence of immune infiltrate. These invading immune cells can cause potentially responding tumors to increase in size and in 18F-FDG consumption, which make them indistinguishable from progressing malignancies. Because of the lack of current diagnostic capabilities, the only option many patients undergoing immunotherapy have to determine if they are responding is overall survival, which is a long and potentially dangerous approach to determining therapeutic efficacy. Additionally, given the increasing number of drugs and combinations being clinically trialed, the ability to monitor therapeutic efficacy at an earlier stage would potentially help bring new treatments to approval much faster. Currently, there is no approved biomarker for determining therapeutic efficacy, and biopsy analysis of tumor markers such as PD-L1 prior to treatment have only resulted in modest improvements of outcome. Thus a biomarker that predicted response would permit significant advances in both the pre-clinical and clinical investigations. Granzyme B, which is secreted by T effector cells following activation and acts as a potent inducer of apoptosis, is a strong predictor of immunotherapy response. I have developed a novel and selective PET imaging peptide that detects the secreted and active form of granzyme B, permitting differentiation between active response to immunotherapy and non-response in which “exhausted” T cells that contain granzyme B may be present but are not actively secreting the enzyme. PET imaging with the granzyme B peptide permits highly sensitive and specific prediction of response to immunotherapy prior to changes in tumor volume in murine syngeneic models of cancer. This phenotype is not limited to mice, as human samples analyzed both by antibody and my peptide show significantly higher levels of granzyme B in responding versus non- responding patients. Thus, granzyme B PET imaging offers a unique insight into early response that is not currently possible using any other technique. Current methods cannot accurately define a response prior to destructive sampling, as a response is defined as lack of progression. Given these limitations, I am proposing to use granzyme B PET imaging to stratify mice based on granzyme B levels, followed by biochemical and genetic analysis of responding and non-responding tumors. The non-invasive nature of PET imaging will not only provide accurate differentiation of response prior to any anatomic changes, but will also allow for secondary therapeutic manipulations based on initial PET imaging results.
摘要 免疫检查点抑制剂显著改善了许多癌症的总生存期, 反过来又引发了巨大的科学和财政投资,以进一步扩大这种治疗方法, 范例然而,目前,免疫疗法的益处仅在少数患者中实现。 使问题进一步复杂化的是,许多免疫疗法都存在发生严重不良免疫事件的风险,并且 检测治疗效果的方法,如解剖分期和18F-FDG PET成像, 可能存在的免疫浸润这些入侵的免疫细胞可能会引起潜在的反应, 肿瘤的大小和18F-FDG消耗增加,这使得它们无法与进展区分 恶性肿瘤由于目前缺乏诊断能力,许多患者接受的唯一选择是 免疫治疗必须确定他们是否有反应是总生存期,这是一个长期的和潜在的 危险的方法来确定治疗效果。此外,随着药物数量的增加, 以及临床试验的组合,在早期阶段监测治疗效果的能力将 可能有助于更快地批准新的治疗方法。目前,没有批准的生物标志物用于 确定治疗效果,以及在治疗前对肿瘤标志物如PD-L1进行活检分析, 仅导致结果的适度改善。因此,预测反应的生物标志物将允许 在临床前和临床研究方面都取得了重大进展。 颗粒酶B,其由T效应细胞在活化后分泌,并作为一种有效的诱导剂, 细胞凋亡是免疫治疗应答的强预测因子。我开发了一种新颖的选择性PET 一种成像肽,可检测颗粒酶B的分泌和活性形式, 对免疫疗法的主动应答和无应答,其中含有颗粒酶B的“耗尽的”T细胞 可能存在,但不主动分泌酶。颗粒酶B肽的PET成像允许 在肿瘤体积变化之前高度敏感和特异地预测对免疫治疗的反应, 小鼠同基因癌症模型。这种表型并不限于小鼠,因为人类样本分析 通过抗体和我的肽显示显着更高水平的颗粒酶B在响应与非 回应患者因此,颗粒酶B PET成像提供了一个独特的洞察早期反应, 目前可以使用任何其他技术。目前的方法不能准确地定义响应之前, 破坏性抽样,作为一种反应被定义为缺乏进展。鉴于这些限制,我建议 使用颗粒酶B PET成像,根据颗粒酶B水平对小鼠进行分层,然后进行生化和 响应和非响应肿瘤的遗传分析。PET成像的非侵入性性质不会 仅在任何解剖学变化之前提供反应的准确区分,但也将允许 基于初始PET成像结果的二次治疗操作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin M Larimer其他文献

Benjamin M Larimer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin M Larimer', 18)}}的其他基金

Site-Specific Immune Cell Activation Detection for Improving Individualized Cancer Immunotherapy
位点特异性免疫细胞激活检测可改善个体化癌症免疫治疗
  • 批准号:
    10001195
  • 财政年份:
    2020
  • 资助金额:
    $ 24.83万
  • 项目类别:
Quantitative PET Imaging for Oncologic Immune Response Prediction
用于肿瘤免疫反应预测的定量 PET 成像
  • 批准号:
    9979791
  • 财政年份:
    2019
  • 资助金额:
    $ 24.83万
  • 项目类别:
Quantitative PET Imaging for Oncologic Immunotherapy Response Prediction
用于肿瘤免疫治疗反应预测的定量 PET 成像
  • 批准号:
    9453124
  • 财政年份:
    2017
  • 资助金额:
    $ 24.83万
  • 项目类别:

相似海外基金

Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
  • 批准号:
    10707830
  • 财政年份:
    2023
  • 资助金额:
    $ 24.83万
  • 项目类别:
Hospital characteristics and Adverse event Rate Measurements (HARM) Evaluated over 21 years.
医院特征和不良事件发生率测量 (HARM) 经过 21 年的评估。
  • 批准号:
    479728
  • 财政年份:
    2023
  • 资助金额:
    $ 24.83万
  • 项目类别:
    Operating Grants
Analysis of ECOG-ACRIN adverse event data to optimize strategies for the longitudinal assessment of tolerability in the context of evolving cancer treatment paradigms (EVOLV)
分析 ECOG-ACRIN 不良事件数据,以优化在不断发展的癌症治疗范式 (EVOLV) 背景下纵向耐受性评估的策略
  • 批准号:
    10884567
  • 财政年份:
    2023
  • 资助金额:
    $ 24.83万
  • 项目类别:
AE2Vec: Medical concept embedding and time-series analysis for automated adverse event detection
AE2Vec:用于自动不良事件检测的医学概念嵌入和时间序列分析
  • 批准号:
    10751964
  • 财政年份:
    2023
  • 资助金额:
    $ 24.83万
  • 项目类别:
Understanding the real-world adverse event risks of novel biosimilar drugs
了解新型生物仿制药的现实不良事件风险
  • 批准号:
    486321
  • 财政年份:
    2022
  • 资助金额:
    $ 24.83万
  • 项目类别:
    Studentship Programs
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
  • 批准号:
    10676786
  • 财政年份:
    2022
  • 资助金额:
    $ 24.83万
  • 项目类别:
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
  • 批准号:
    10440970
  • 财政年份:
    2022
  • 资助金额:
    $ 24.83万
  • 项目类别:
Improving Adverse Event Reporting on Cooperative Oncology Group Trials
改进肿瘤学合作组试验的不良事件报告
  • 批准号:
    10642998
  • 财政年份:
    2022
  • 资助金额:
    $ 24.83万
  • 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
  • 批准号:
    10482465
  • 财政年份:
    2022
  • 资助金额:
    $ 24.83万
  • 项目类别:
Expanding and Scaling Two-way Texting to Reduce Unnecessary Follow-Up and Improve Adverse Event Identification Among Voluntary Medical Male Circumcision Clients in the Republic of South Africa
扩大和扩大双向短信,以减少南非共和国自愿医疗男性包皮环切术客户中不必要的后续行动并改善不良事件识别
  • 批准号:
    10191053
  • 财政年份:
    2020
  • 资助金额:
    $ 24.83万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了