Rapid brain-wide optogenetic screening with a noninvasive, dynamically programmable in vivo light source
使用无创、动态可编程体内光源进行快速全脑光遗传学筛查
基本信息
- 批准号:10401548
- 负责人:
- 金额:$ 180万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAmygdaloid structureAnimalsBehaviorBiologicalBlood CirculationBrainBrain regionCell NucleusCerebrumChargeChemicalsChronicCommunitiesComplexCraniotomyDevicesDiseaseEnsureFOS geneFiberFocused UltrasoundHalf-LifeHeadHeartHeatingHippocampus (Brain)ImageInjectionsIntravenousKineticsLightLightingLocationMeasuresMedialMediatingMemoryMethodsModelingMorphineMotor CortexMusNeuronsNeurosciencesNeurosciences ResearchOpioidOpsinOpticsPathologyPatternPenetrationPharmaceutical PreparationsPhotometryPhotonsPrefrontal CortexProceduresProductionProtocols documentationPumpRapid screeningReporterResolutionSliceSourceSpecificityStructureStructure of subthalamic nucleusTechnologyTemperatureTestingTimeTissuesTrainingTransducersTransgenic MiceTravelUltrasonic TransducerVariantVisible Radiationabsorptionattenuationbasebiomaterial compatibilitybiophysical propertiesbrain tissueconditioned place preferencecraniumdesigndrug seeking behaviorexcitatory neuronexperimental studyhemodynamicsimplantationin vivointerestintravenous injectionlight emissionlight intensitymillisecondminimally invasivenanoparticlenanophotonicneural circuitneuroregulationoptical fiberoptical spectraoptogeneticsphotonicspreferencepressureprogramsrelating to nervous systemresponsesample fixationscreeningsimulationspatiotemporalsurface coatingtoolultrasoundvirtual reality
项目摘要
PROJECT SUMMARY/ABSTRACT
Optogenetics provides a precise deconstruction of neural circuits by optically manipulating the activity of opsin-expressing neurons with fast temporal responses and neuron-type specificity. A critical challenge of delivering light in the brain for in vivo optogenetics arises from the poor penetration of photons in biological tissue due to the scattering and absorption of light. As a result, in vivo optogenetic stimulation in the deep brain usually requires invasive procedures, such as craniotomy and intracranial implantation of optical fibers. The very invasiveness of these procedures also precludes easy repositioning and volume adjustment of the illuminated region in the same subject. Several strategies have been employed to address the challenges above. Red-shifted and ultrasensitive opsins enable transcranial optogenetics, yet light must travel through all superficial brain tissues with significant power attenuation, heating to other brain structures, potential off-target effects, and an inability to reposition the manipulated brain regions. Tapered optical fibers and reconfigurable nanophotonic circuits enable dynamic illumination across multiple brain regions but still require invasive implantation of photonic devices. Recently the Hong lab demonstrated “sono-optogenetics”, a minimally invasive method for optogenetically manipulating neural activity in vivo via brain-penetrant, focused ultrasound (FUS). Central to this method is mechanoluminescent nanoparticles (MLNPs), which can be delivered intravenously, charged by 400-nm light when passing through superficial vessels, pumped by the heart into cerebral vessels, and then gated by FUS to emit 470-nm light locally for opsin activation, all without exiting the blood circulation. Based on these advances, we propose a rapid brain-wide optogenetic screening approach by producing on-demand light emission at any location or depth in the mouse brain. The long-term objective of this proposal is to noninvasively produce on-demand light emission patterns at any location or depth in the mouse brain for rapid brain-wide optogenetic screening of different brain regions. Specifically, the Hong lab aims to develop a toolbox of MLNPs with distinct emission spectra matching different opsin variants, bright mechanoluminescence, and favorable in-vivo circulation half-life. We will characterize and validate their spectral and biophysical properties by constructing an intravital light source with on-demand emission patterns in the brain of live mice. We then seek to use the FUS-mediated intravital light source to optogenetically stimulate multiple brain regions in the same mouse, thereby fulfilling the dynamic selection of illuminated brain regions. The Butts Pauly lab will facilitate the Hong lab in the design of FUS protocols, ensuring minimal neuromodulatory effects by direct FUS stimulation of the brain. Finally, to demonstrate the unique strengths of this approach in addressing neuroscience challenges, the Hong and Chen labs will screen different brain regions that have been found to store opiate-associated memories in the same mouse brain for dissecting their contributions to the animal’s drug-seeking behavior. The proposed method will provide a valuable tool for the broader neuroscience community to rapidly screen different brain regions underlying a certain behavior or pathology of interest in the same animals.
项目摘要/摘要
光遗传学通过光学操作视蛋白表达神经元的活动,提供了一种精确的神经回路解构,具有快速的时间反应和神经元类型特异性。对于活体光遗传学来说,在大脑中传递光的一个关键挑战来自于光的散射和吸收导致光子在生物组织中穿透不良。因此,在体脑深部的光遗传刺激通常需要侵入性的程序,如开颅手术和脑内光纤植入。这些程序的侵入性也排除了在同一对象中容易地重新定位和调节照明区域的音量。已经采取了几项战略来应对上述挑战。红移和超灵敏的光学蛋白使经颅的光遗传学成为可能,然而光必须穿过所有浅表的脑组织,具有显著的能量衰减,加热到其他大脑结构,潜在的偏离目标的效应,以及无法重新定位被操纵的大脑区域。锥形光纤和可重新配置的纳米光子电路可以实现跨多个大脑区域的动态照明,但仍需要侵入性植入光子设备。最近,洪实验室展示了一种通过脑穿透聚焦超声(FUS)对体内神经活动进行光遗传学操作的微创方法--声光遗传学。这种方法的核心是机械发光纳米颗粒(MLNPs),它可以通过静脉注射,在穿过浅血管时由400 nm的光充电,由心脏泵入脑血管,然后由FUS选通,在局部发射470 nm的光用于视蛋白激活,所有这些都不需要离开血液循环。基于这些进展,我们提出了一种快速的全脑光遗传筛选方法,通过在小鼠大脑的任何位置或深度产生按需光发射。这项提议的长期目标是在小鼠大脑的任何位置和深度非侵入性地产生按需发光模式,以便对不同大脑区域进行快速全脑光遗传筛查。具体地说,Hong实验室的目标是开发一种MLNPs工具箱,该工具箱具有不同的发射光谱,匹配不同的视蛋白变体,明亮的机械发光,以及良好的体内循环半衰期。我们将通过构建活体小鼠大脑中具有按需发射模式的体内光源来表征和验证它们的光谱和生物物理特性。然后,我们寻求使用FUS介导的活体内光源来光遗传刺激同一小鼠的多个大脑区域,从而实现对受照大脑区域的动态选择。巴茨·保利实验室将协助香港实验室设计FUS方案,确保通过直接FUS刺激大脑产生最小的神经调节效应。最后,为了展示这种方法在应对神经科学挑战方面的独特优势,洪和陈的实验室将筛选已被发现在同一小鼠大脑中存储阿片相关记忆的不同大脑区域,以剖析它们对动物寻求药物行为的贡献。建议的方法将为更广泛的神经科学界提供一个有价值的工具,以快速筛选与同一动物感兴趣的特定行为或病理相关的不同大脑区域。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Wireless deep-brain neuromodulation using photovoltaics in the second near-infrared spectrum.
- DOI:10.1016/j.device.2023.100113
- 发表时间:2023-10
- 期刊:
- 影响因子:0
- 作者:Han Cui;Su Zhao;Guosong Hong
- 通讯作者:Han Cui;Su Zhao;Guosong Hong
Palette of Rechargeable Mechanoluminescent Fluids Produced by a Biomineral-Inspired Suppressed Dissolution Approach.
- DOI:10.1021/jacs.2c06724
- 发表时间:2022-10-12
- 期刊:
- 影响因子:15
- 作者:Yang, Fan;Wu, Xiang;Cui, Han;Jiang, Shan;Ou, Zihao;Cai, Sa;Hong, Guosong
- 通讯作者:Hong, Guosong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kim Butts-Pauly其他文献
Kim Butts-Pauly的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kim Butts-Pauly', 18)}}的其他基金
Step 1 in Designing Appropriate Shams and Controls in Human TUS
在人类 TUS 中设计适当的假手术和对照的步骤 1
- 批准号:
10735292 - 财政年份:2023
- 资助金额:
$ 180万 - 项目类别:
Stanford's Translational Biomedical Imaging Instrumentation (TBI2) Training Program
斯坦福大学转化生物医学成像仪器 (TBI2) 培训计划
- 批准号:
10627475 - 财政年份:2023
- 资助金额:
$ 180万 - 项目类别:
CRCNS: Crossbeam Transcranial Ultrasound Technology to Stimulate the Deep Brain
CRCNS:交叉束经颅超声技术刺激深部大脑
- 批准号:
10482358 - 财政年份:2021
- 资助金额:
$ 180万 - 项目类别:
CRCNS: Crossbeam Transcranial Ultrasound Technology to Stimulate the Deep Brain
CRCNS:交叉束经颅超声技术刺激深部大脑
- 批准号:
10682454 - 财政年份:2021
- 资助金额:
$ 180万 - 项目类别:
CRCNS: Crossbeam Transcranial Ultrasound Technology to Stimulate the Deep Brain
CRCNS:交叉束经颅超声技术刺激深部大脑
- 批准号:
10397709 - 财政年份:2021
- 资助金额:
$ 180万 - 项目类别:
The Impact of FUS-Mediated Brain Cancer Therapy on BBB Transport, Cytokines, and Immunocyte Trafficking
FUS 介导的脑癌治疗对 BBB 运输、细胞因子和免疫细胞贩运的影响
- 批准号:
10356815 - 财政年份:2018
- 资助金额:
$ 180万 - 项目类别:
MR-guided Focused Ultrasound Neuromodulation of Deep Brain Structures
磁共振引导聚焦超声神经调节脑深部结构
- 批准号:
9358735 - 财政年份:2016
- 资助金额:
$ 180万 - 项目类别:
MR-guided Focused Ultrasound Neuromodulation of Deep Brain Structures
磁共振引导聚焦超声神经调节脑深部结构
- 批准号:
9228441 - 财政年份:2016
- 资助金额:
$ 180万 - 项目类别:
MR-guided Focused Ultrasound Neuromodulation of Deep Brain Structures
磁共振引导聚焦超声神经调节脑深部结构
- 批准号:
9751388 - 财政年份:2016
- 资助金额:
$ 180万 - 项目类别:
Magnetic Resonance Imaging-Guided Cancer Interventions
磁共振成像引导的癌症干预
- 批准号:
8152749 - 财政年份:2011
- 资助金额:
$ 180万 - 项目类别:














{{item.name}}会员




