Leveraging Data Science and Informatics in an Automated Detection System of Surgical Errors
在手术错误自动检测系统中利用数据科学和信息学
基本信息
- 批准号:10402771
- 负责人:
- 金额:$ 1.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-05 至 2022-08-04
- 项目状态:已结题
- 来源:
- 关键词:AddressAdverse eventArtificial IntelligenceCharacteristicsClinicalCodeCognitiveCommunicationCommunitiesCompanionsComputer AnalysisComputer softwareCustomDataData ScienceDetectionElectronic Health RecordEngineeringEnsureEquipmentEtiologyEventFoundationsFutureGenetic TranscriptionGoalsGrantHospitalsInformaticsInformation SystemsLeadLinkLiteratureManualsModelingMonitorNatural Language ProcessingNatureNotificationOperating RoomsOperative Surgical ProceduresOutcomePatient-Focused OutcomesPatientsPatternPrevalenceProceduresPublishingReportingResearchResearch PersonnelRiskSafetySeriesSource CodeSurgical ErrorSystemTechnologyTestingTextTimeTrainingUpdateVisionVisualizationVisualization softwareWorkadverse outcomebasedata visualizationdata warehousedeep learning modeldemographicsdetection platformhigh riskimprovedinsightlarge datasetsmachine learning modelmachine learning predictionmembernovelopen sourceoperationpredictive modelingpressurepreventprospectivereal time monitoringrobot assistancesurgery outcomesurgical risktext searchingtool
项目摘要
Technological advancements continue to improve surgical outcomes. However, these
technologies also introduce new challenges such as communication complexities, equipment
troubleshooting under intense pressure, and higher cognitive demand on OR team members. In
other words, surgery will continue to be risky despite technological improvements. There is
evidence the number of avoidable complications may be underreported, that approximately 39%
of in-hospital adverse events are surgical related, and that as many as 4,000 surgical never
events (events which should not have occurred) happen in the US each year.
The eventual goal of this research is to develop an automated detection system (ADS) of high-
risk surgical states. The ADS will prevent surgical safety incidents before they occur through
real-time monitoring and notification of appropriate operating room (OR) team members ahead-
of-time if there is a looming risk. Thereby allowing the team to reconsider next steps and
address the underlying issues, and hence reduce the rates of negative surgical outcomes.
This project demonstrates the feasibility and merit of essential components for an ADS.
Specifically, the surgical safety literature provides compelling evidence that surgical work-flow
disruption (FD) sequences are informative indicators of error causation, therefore it is likely that
a future ADS will model and monitor surgical state through tracking flow disruptions. Our current
aims are to (1) finish implementation of the Research & Exploratory Analysis Driven Time-data
Visualization (READ-TV) research tool; open-source software to visualize FD patterns and other
longitudinal data. (2) Develop a stochastic model to predict whether high-risk, disruptive FD
sequences will occur based on FD rates at earlier time points. (3) Link FD patterns and
sequences with surgical outcomes by developing a text classifier to identify whether or not a
surgical safety incident or near-miss occurred based on the associated EHR note. The classifier
will be a deep learning model trained with tens of thousands of surgical EHR notes.
The text analysis in the third aim will provide insight to FD types and sequences that are more
error prone, thereby revealing the FD patterns that an ADS should warn an OR team to avoid.
Additional benefits of this text analysis include a possible confirmation of the existence of
incident underreporting.
Upon completion of the 3 aims, we will have a computational foundation for an ADS: our
research tool (aim 1: READ-TV visualization software) and analyses (aim 3: link flow disruptions
to safety incidents through EHR note analysis) will advance interpretation of flow disruption (FD)
sequences, and our stochastic models (aim 2: predict future surgical state from FD sequences)
will prospectively predict error-prone states. This foundation can be extended in future projects
through research in automatic transcription of flow disruptions, and the proper mode of alert
delivery if the surgery is prone to enter an error-prone state.
技术进步继续改善手术结果。但这些
技术也带来了新的挑战,如通信复杂性、设备
压力大,对手术团队成员的认知要求更高。在
换句话说,尽管技术有所改进,但手术仍将存在风险。有
有证据表明,可避免的并发症数量可能被低估,约39%
的院内不良事件与手术有关,多达4,000例手术从未发生过。
美国每年都发生一些不该发生的事情。
本研究的最终目标是开发一种高性能的自动检测系统(ADS)。
风险外科状态。ADS将通过以下方式在手术安全事件发生之前预防手术安全事件
实时监控并提前通知适当的手术室(OR)团队成员-
时间,如果有风险。从而让团队重新考虑下一步,
解决潜在问题,从而降低手术不良结局的发生率。
该项目证明了ADS基本组件的可行性和优点。
具体而言,手术安全性文献提供了令人信服的证据,表明手术工作流程
中断(FD)序列是错误原因的信息指标,因此很可能
未来的ADS将通过跟踪血流中断来模拟和监控手术状态。我们目前
目标是(1)完成研究和探索性分析驱动的时间数据的实施
可视化(READ-TV)研究工具;可视化FD模式的开源软件和其他
纵向数据(2)开发一个随机模型来预测高风险、破坏性FD
序列将基于较早时间点的FD速率发生。(3)链路FD模式和
通过开发文本分类器来识别手术结果的序列,
根据相关EHR记录,发生手术安全事件或未遂事件。分类器
它将是一个深度学习模型,由成千上万的手术EHR笔记训练而成。
第三个目标中的文本分析将提供对FD类型和序列的洞察力,
容易出错,从而揭示了ADS应该警告OR团队避免的FD模式。
这种文本分析的其他好处包括可能确认
事故漏报
在完成这三个目标后,我们将拥有ADS的计算基础:我们的
研究工具(目标1:READ-TV可视化软件)和分析(目标3:链路流中断
通过EHR笔记分析的安全事件)将推进对流量中断(FD)的解释
序列和我们的随机模型(目的2:根据FD序列预测未来的手术状态)
将前瞻性地预测容易出错的状态。这个基础可以在未来的项目中扩展
通过研究流量中断的自动记录和适当的警报模式,
如果手术容易进入易出错的状态,
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Delgaizo其他文献
John Delgaizo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10707830 - 财政年份:2023
- 资助金额:
$ 1.23万 - 项目类别:
Hospital characteristics and Adverse event Rate Measurements (HARM) Evaluated over 21 years.
医院特征和不良事件发生率测量 (HARM) 经过 21 年的评估。
- 批准号:
479728 - 财政年份:2023
- 资助金额:
$ 1.23万 - 项目类别:
Operating Grants
Analysis of ECOG-ACRIN adverse event data to optimize strategies for the longitudinal assessment of tolerability in the context of evolving cancer treatment paradigms (EVOLV)
分析 ECOG-ACRIN 不良事件数据,以优化在不断发展的癌症治疗范式 (EVOLV) 背景下纵向耐受性评估的策略
- 批准号:
10884567 - 财政年份:2023
- 资助金额:
$ 1.23万 - 项目类别:
AE2Vec: Medical concept embedding and time-series analysis for automated adverse event detection
AE2Vec:用于自动不良事件检测的医学概念嵌入和时间序列分析
- 批准号:
10751964 - 财政年份:2023
- 资助金额:
$ 1.23万 - 项目类别:
Understanding the real-world adverse event risks of novel biosimilar drugs
了解新型生物仿制药的现实不良事件风险
- 批准号:
486321 - 财政年份:2022
- 资助金额:
$ 1.23万 - 项目类别:
Studentship Programs
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10676786 - 财政年份:2022
- 资助金额:
$ 1.23万 - 项目类别:
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10440970 - 财政年份:2022
- 资助金额:
$ 1.23万 - 项目类别:
Improving Adverse Event Reporting on Cooperative Oncology Group Trials
改进肿瘤学合作组试验的不良事件报告
- 批准号:
10642998 - 财政年份:2022
- 资助金额:
$ 1.23万 - 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10482465 - 财政年份:2022
- 资助金额:
$ 1.23万 - 项目类别:
Expanding and Scaling Two-way Texting to Reduce Unnecessary Follow-Up and Improve Adverse Event Identification Among Voluntary Medical Male Circumcision Clients in the Republic of South Africa
扩大和扩大双向短信,以减少南非共和国自愿医疗男性包皮环切术客户中不必要的后续行动并改善不良事件识别
- 批准号:
10191053 - 财政年份:2020
- 资助金额:
$ 1.23万 - 项目类别:














{{item.name}}会员




