Metabolic imaging comparisons of patient-derived models of renal cell carcinoma

肾细胞癌患者来源模型的代谢成像比较

基本信息

项目摘要

This year, ~62,000 Americans will be diagnosed with kidney cancer and more than 14,000 individuals will die from this disease. Nine of ten kidney cancers are renal cell carcinoma (RCC). To reduce mortality from RCC, improvements are needed at all stages, from diagnosis to prognosis to therapy. In response to the funding opportunity “Biological Comparisons in Patient-derived Models of Cancer (U01)”, we will compare four types of patient-derived models of RCC to investigate the relative authenticity of each as a preclinical model. The first will be patient-derived xenografts (PDXs), widely perceived as the most representative models of human pathophysiology. These have been previously established from a range of pathologic and clinical stages of RCC. The PDXs will serve as the “gold standard” to which to compare three PDX-derived models, including tissue slice cultures (TSCs), primary cell cultures, and xenografts generated from cell cultures. The biological comparison on which we focus is metabolism. Dysregulated metabolism, one of the hallmarks of cancer, is strongly implicated in the development and progression of RCC. Pleiotropic changes include dysregulation of oxygen sensing, energy sensing and nutrient sensing. In particular, high frequency mutations in VHL and FBP1 genes contribute to exhibition of the “Warburg effect” (an elevation of glycolysis in the presence of oxygen) in clear cell RCC, the major subtype of RCC, leading to increased production and excretion of lactate. Comparing metabolism among the four patient-derived models of RCC will capture the functional consequences of genetic, transcriptomic, environmental and other influences to provide a comprehensive picture of the phenotype of each model system. We will use hyperpolarized (HP) 13C magnetic resonance (MR), a remarkably sensitive molecular imaging technique, to surveil dynamic pathway-specific metabolic and physiologic processes in the patient-derived RCC models, yielding biologically and clinically relevant data. Aim 1 will identify the metabolic signature of each of 8 RCC PDXs by HP MR imaging and steady state metabolomic profiling. The metabolic data will be associated with genotypic, transcriptomic and immunotypic features to establish the phenotype of each PDX. In Aim 2, thin precision-cut tissue slices will be prepared from each of the 8 PDXs and placed in a NMR-compatible, 3D tissue culture bioreactor. The metabolic phenotype of the TSCs will be determined by HP MR and steady state studies and compared to that of the original PDXs, along with genetic, transcriptomic and immunohistologic features. Similar studies will be performed in Aim 3 with primary cell cultures derived from PDXs, and in Aim 4 with xenografts generated by the implantation in mice of PDX-derived cell cultures. In Aim 5, the final test of the four types of models will be a comparison of metabolic responses to the clinically relevant glutaminase inhibitor CB-839, which is currently entering clinical trials in RCC.
今年,约有62,000名美国人将被诊断出患有肾癌,14,000多人将 死于这种疾病。十个肾脏癌中有9例是肾细胞癌(RCC)。降低死亡率 从诊断到及时治疗,在各个阶段需要改进的RCC,需要改进。回应 资金机会“在癌症的患者衍生模型(U01)中的生物学比较”,我们将比较四个 RCC的患者衍生模型的类型研究每种临床前模型的相对真实性。 第一个将是患者衍生的Xenographictic(PDXS),被广泛认为是最具代表性的模型 人类病理生理学。这些以前是从一系列病理和临床上建立的 RCC的阶段。 PDX将作为比较三种PDX衍生模型的“黄金标准” 包括组织切片培养物(TSC),原代细胞培养物和由细胞培养产生的异种移植物。 我们关注的生物学比较是代谢。代谢失调,其中之一 癌症的标志与RCC的发展和发展密切相关。多效变化 包括氧气传感,能量传感和营养感测的失调。特别是高频 VHL和FBP1基因中的突变有助于展示“ Warburg效应”(糖酵解的升高 RCC的主要亚型Clear Cell RCC中的氧气存在,导致产量增加和 鞋底的排泄。比较四种由患者衍生的RCC模型中的代谢将捕获 遗传,转录组,环境和其他影响的功能后果,以提供 每个模型系统表型的全面图片。我们将使用超极化(HP)13C磁 共振(MR)是一种非常敏感的分子成像技术,可调查动态途径特异性 患者衍生的RCC模型中的代谢和生理过程,在生物学上和临床上产生 相关数据。 AIM 1将通过HP MR成像和稳态来识别8个RCC PDX中每种的代谢特征 代谢组分析。代谢数据将与基因型,转录组和免疫型有关 建立每个PDX的表型的功能。在AIM 2中,将准备薄的精确切割组织切片 从8个PDX中的每一个中,放置在NMR兼容的3D组织培养物生物反应器中。代谢 TSC的表型将由HP MR和稳态研究确定,并将其与 原始PDX以及遗传,转录组和免疫组织学特征。类似的研究将是 在AIM 3中与源自PDXS的原代细胞培养物进行,并在AIM 4中使用异种移植物产生的异种移植物。 PDX衍生细胞培养物的小鼠植入。在AIM 5中,对四种模型的最终测试将是 对临床相关的谷氨酰胺酶抑制剂CB-839的代谢反应的比较,目前是 进入RCC的临床试验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Kurhanewicz其他文献

John Kurhanewicz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Kurhanewicz', 18)}}的其他基金

High Field MRI For Optimized Translational 1H Multiparametric and Multinuclear Imaging Research
用于优化平移 1H 多参数和多核成像研究的高场 MRI
  • 批准号:
    10175910
  • 财政年份:
    2021
  • 资助金额:
    $ 63.36万
  • 项目类别:
Preclinical imaging characterization and resource development of PDX SCNC prostate cancer murine models
PDX SCNC 前列腺癌小鼠模型的临床前成像特征和资源开发
  • 批准号:
    10378320
  • 财政年份:
    2020
  • 资助金额:
    $ 63.36万
  • 项目类别:
Co-Clinical Quantitative Imaging of Small Cell Neuroendocrine Prostate Cancer Using Hyperpolarized 13C MRI
使用超极化 13C MRI 对小细胞神经内分泌前列腺癌进行临床联合定量成像
  • 批准号:
    10669081
  • 财政年份:
    2020
  • 资助金额:
    $ 63.36万
  • 项目类别:
Co-Clinical Quantitative Imaging of Small Cell Neuroendocrine Prostate Cancer Using Hyperpolarized 13C MRI
使用超极化 13C MRI 对小细胞神经内分泌前列腺癌进行临床联合定量成像
  • 批准号:
    10057724
  • 财政年份:
    2020
  • 资助金额:
    $ 63.36万
  • 项目类别:
Co-Clinical Quantitative Imaging of Small Cell Neuroendocrine Prostate Cancer Using Hyperpolarized 13C MRI
使用超极化 13C MRI 对小细胞神经内分泌前列腺癌进行临床联合定量成像
  • 批准号:
    10470345
  • 财政年份:
    2020
  • 资助金额:
    $ 63.36万
  • 项目类别:
Characterization of PDX SCNC prostate cancer metastatic murine models and development of associated research resources
PDX SCNC 前列腺癌转移小鼠模型的表征和相关研究资源的开发
  • 批准号:
    10533469
  • 财政年份:
    2020
  • 资助金额:
    $ 63.36万
  • 项目类别:
Co-Clinical Quantitative Imaging of Small Cell Neuroendocrine Prostate Cancer Using Hyperpolarized 13C MRI
使用超极化 13C MRI 对小细胞神经内分泌前列腺癌进行临床联合定量成像
  • 批准号:
    10256057
  • 财政年份:
    2020
  • 资助金额:
    $ 63.36万
  • 项目类别:
Co-Clinical Quantitative Imaging of Small Cell Neuroendocrine Prostate Cancer Using Hyperpolarized 13C MRI
使用超极化 13C MRI 对小细胞神经内分泌前列腺癌进行临床联合定量成像
  • 批准号:
    10737795
  • 财政年份:
    2020
  • 资助金额:
    $ 63.36万
  • 项目类别:
Metabolic imaging comparisons of patient-derived models of renal cell carcinoma
肾细胞癌患者来源模型的代谢成像比较
  • 批准号:
    9753176
  • 财政年份:
    2017
  • 资助金额:
    $ 63.36万
  • 项目类别:
CLINICAL TRANSLATION OF HYPERPOLARIZED 13C-UREA FOR CANCER MR MOLECULAR IMAGING
超极化 13C-尿素用于癌症 MR 分子成像的临床转化
  • 批准号:
    10116302
  • 财政年份:
    2017
  • 资助金额:
    $ 63.36万
  • 项目类别:

相似海外基金

Detection of Emergent Mechanical Properties of Biologically Complex Cellular States
生物复杂细胞状态的紧急机械特性的检测
  • 批准号:
    10832871
  • 财政年份:
    2023
  • 资助金额:
    $ 63.36万
  • 项目类别:
Prohibiting Cell Death in Human Keratocytes: New Insights for Non-surgical Keratoconus Treatment
抑制人角膜细胞的细胞死亡:非手术圆锥角膜治疗的新见解
  • 批准号:
    10720431
  • 财政年份:
    2023
  • 资助金额:
    $ 63.36万
  • 项目类别:
Molecular Characterization of Anti-Tumor Activity Mediated by Extracellular Vesicles Derived from Natural Killer Cells
自然杀伤细胞来源的细胞外囊泡介导的抗肿瘤活性的分子表征
  • 批准号:
    10587355
  • 财政年份:
    2023
  • 资助金额:
    $ 63.36万
  • 项目类别:
Microcalcifications in Atherosclerotic Plaque
动脉粥样硬化斑块中的微钙化
  • 批准号:
    10411607
  • 财政年份:
    2022
  • 资助金额:
    $ 63.36万
  • 项目类别:
Synergistic combination of Proteolysis Targeting Chimera with a translational formulation for the treatment of intractable lung carcinoma
蛋白水解靶向嵌合体与转化制剂的协同组合用于治疗难治性肺癌
  • 批准号:
    10580447
  • 财政年份:
    2022
  • 资助金额:
    $ 63.36万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了