Understanding the regulation of ER GPATs to control glycerolipid synthesis in disease
了解 ER GPAT 的调节以控制疾病中的甘油脂合成
基本信息
- 批准号:10230829
- 负责人:
- 金额:$ 6.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:Acyl Coenzyme AAcyltransferaseAddressAnimal ModelBindingBiochemistryBiologyCRISPR screenCRISPR/Cas technologyCaenorhabditis elegansCalcineurinCell physiologyCellsCellular MembraneCellular biologyCharacteristicsClustered Regularly Interspaced Short Palindromic RepeatsCoenzyme AComplexDevelopmentDiseaseDrosophila genusEF Hand MotifsEndoplasmic ReticulumEnzymesEquilibriumFatty AcidsFatty LiverFinancial compensationFutureGap JunctionsGenerationsGenesGeneticGenetic ScreeningGlycerolipid Metabolism PathwayHealthHeart failureHomeostasisHomologous ProteinHumanImpairmentInsulin ResistanceInvertebratesKnockout MiceLigaseLipidsLiverMammalian CellMediatingMembraneMetabolicMetabolic DiseasesMetabolismMolecularMutation AnalysisNonesterified Fatty AcidsOrganellesPPP3CB genePathologyPeroxisome Proliferator-Activated ReceptorsPhospholipidsPlayPost-Translational RegulationProcessProtein IsoformsProteinsProteomicsPublishingRegulationResearch PersonnelRoleSeriesSeveritiesTestingTimeTrainingTriglyceridesWorkalpha-glycerophosphoric acidbasecareercell behaviorcell typeexperimental studygenetic regulatory proteinhuman diseaseimprovedin vivoinnovationinsightlipid metabolismlipidomicslong chain fatty acidmouse modelnonalcoholic steatohepatitisnovelnovel therapeuticspost-doctoral trainingprotein acyltransferasetooltranscription factorwhole genome
项目摘要
PROJECT SUMMARY
Cells are dependent on fatty acids for the generation of membranes and the storage of energy. Within the cell,
fatty acids incorporate into membrane and storage glycerolipids through a series of metabolic enzymes. The
importance of this process to human health and disease is highlighted by the fact that many metabolic diseases
are characterized by dysfunctional lipid accumulation. Despite the importance of glycerolipid synthesis from fatty
acids cellular homeostasis and human disease, relatively little is known about the allosteric mechanisms that
regulate and control this process.
Using CRISPR genetic screens and unbiased lipidomics, the Birsoy lab recently identified calcineurin B
homologous protein 1 (CHP1) as a novel regulator of endoplasmic reticulum (ER) glycerolipid synthesis. In this
recently published study, our lab showed that loss off CHP1 severely blunted fatty acid incorporation and storage
in mammalian cells and invertebrate model organisms. Mechanistically, our lab demonstrated that CHP1 controls
glycerolipid synthesis by activating the ER GPAT, GPAT4, the initial rate limiting enzyme for glycerolipid
synthesis within the ER. The mechanism by which CHP1 activates GPAT4 is direct, as it was found that CHP1
and GPAT4 form a complex. This work identified CHP1 as one of few regulatory proteins of glycerolipid synthesis
described to date. We believe other such regulatory mechanisms control lipid metabolism likely exist.
This proposal seeks to more deeply understand the novel biology discovered in our preliminary work and
discover additional regulators of ER GPAT activity and function. In Aim 1, we seek to understand the precise
mechanism by which CHP1 binds and activates GPAT4. This will provide insight into the posttranslational
regulation of lipid metabolism and guide future study of other mechanisms analogous to CHP1. In Aim 2, we will
utilize a novel mouse model we recently generated to study ER GPAT function in vivo in both homeostasis and
disease such as NASH. In Aim 3, we seek to identify additional mechanisms regulating ER resident GPAT4
through unbiased genetic screening and proteomic approaches. Spanning basic biochemistry to mouse
modeling, this application will address outstanding fundamental questions in cellular metabolism and understand
this biology in the context of complex diseases afflicting humankind. The innovative studies proposed in this
application in addition to the personalized training plan, will provide rigorous postdoctoral training that will prepare
me to become an independent investigator.
项目概要
细胞依赖脂肪酸来产生细胞膜和储存能量。在细胞内,
脂肪酸通过一系列代谢酶融入膜和储存甘油脂中。这
许多代谢性疾病都强调了这一过程对人类健康和疾病的重要性
其特点是脂质蓄积功能失调。尽管从脂肪合成甘油脂很重要
酸细胞稳态和人类疾病,但人们对酸的变构机制知之甚少。
调节和控制这个过程。
Birsoy 实验室最近利用 CRISPR 基因筛选和无偏脂质组学鉴定出钙调神经磷酸酶 B
同源蛋白 1 (CHP1) 作为内质网 (ER) 甘油脂合成的新型调节剂。在这个
最近发表的研究表明,CHP1 的丢失严重削弱了脂肪酸的掺入和储存
在哺乳动物细胞和无脊椎动物模型生物中。从机制上讲,我们的实验室证明 CHP1 控制
通过激活 ER GPAT、GPAT4(甘油脂的初始限速酶)合成甘油脂
ER 内合成。 CHP1 激活 GPAT4 的机制是直接的,因为发现 CHP1
和GPAT4形成复合物。这项工作确定 CHP1 是甘油脂合成的少数调节蛋白之一
迄今为止所描述的。我们相信其他此类控制脂质代谢的调节机制可能存在。
该提案旨在更深入地了解我们在前期工作中发现的新生物学,
发现 ER GPAT 活性和功能的其他调节因子。在目标 1 中,我们寻求了解准确的
CHP1 结合并激活 GPAT4 的机制。这将提供对翻译后的深入了解
脂质代谢的调节并指导未来与 CHP1 类似的其他机制的研究。在目标 2 中,我们将
利用我们最近生成的新型小鼠模型来研究 ER GPAT 在体内稳态和
NASH 等疾病。在目标 3 中,我们寻求确定调节 ER 驻留 GPAT4 的其他机制
通过公正的基因筛查和蛋白质组学方法。从基础生物化学到小鼠
建模,该应用程序将解决细胞代谢中突出的基本问题并理解
这种生物学在困扰人类的复杂疾病的背景下。本论文提出的创新性研究
申请除了个性化的培养计划外,还将提供严格的博士后培训,为您做好准备
我成为一名独立调查员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy Cole Kenny其他文献
Timothy Cole Kenny的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy Cole Kenny', 18)}}的其他基金
Understanding the regulation of ER GPATs to control glycerolipid synthesis in disease
了解 ER GPAT 的调节以控制疾病中的甘油脂合成
- 批准号:
10671449 - 财政年份:2021
- 资助金额:
$ 6.56万 - 项目类别:
Understanding the regulation of ER GPATs to control glycerolipid synthesis in disease
了解 ER GPAT 的调节以控制疾病中的甘油脂合成
- 批准号:
10356065 - 财政年份:2021
- 资助金额:
$ 6.56万 - 项目类别:
相似海外基金
Design of chemical probes for hedgehog acyltransferase
Hedgehog酰基转移酶化学探针的设计
- 批准号:
2600595 - 财政年份:2022
- 资助金额:
$ 6.56万 - 项目类别:
Studentship
Identification of the glycolytic enzyme palmitoyl acyltransferase
糖酵解酶棕榈酰酰基转移酶的鉴定
- 批准号:
571756-2022 - 财政年份:2022
- 资助金额:
$ 6.56万 - 项目类别:
University Undergraduate Student Research Awards
The role of LYCAT acyltransferase in phagocytosis and immune function
LYCAT酰基转移酶在吞噬作用和免疫功能中的作用
- 批准号:
564899-2021 - 财政年份:2021
- 资助金额:
$ 6.56万 - 项目类别:
University Undergraduate Student Research Awards
Targeting a Human Acyltransferase for Broad-Spectrum Antivirals
靶向人类酰基转移酶的广谱抗病毒药物
- 批准号:
10223496 - 财政年份:2021
- 资助金额:
$ 6.56万 - 项目类别:
Hedgehog acyltransferase : structure and function in health and disease
Hedgehog酰基转移酶:健康和疾病中的结构和功能
- 批准号:
BB/T01508X/1 - 财政年份:2020
- 资助金额:
$ 6.56万 - 项目类别:
Research Grant
Is transcription factor TEAD a missing protein lysine fatty acyltransferase?
转录因子 TEAD 是缺失的蛋白质赖氨酸脂肪酰基转移酶吗?
- 批准号:
19K22271 - 财政年份:2019
- 资助金额:
$ 6.56万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Protein acyltransferase mediated S-palmitoylation and its Importance in Innate Immunity and Lipid Metabolism.
蛋白质酰基转移酶介导的 S-棕榈酰化及其在先天免疫和脂质代谢中的重要性。
- 批准号:
401169 - 财政年份:2019
- 资助金额:
$ 6.56万 - 项目类别:
Operating Grants
Basic research on the development of therapeutic agents for Alzheimer's disease using Acyl-CoA:cholesterol acyltransferase inhibitor
利用酰基辅酶A:胆固醇酰基转移酶抑制剂开发阿尔茨海默病治疗剂的基础研究
- 批准号:
19K07093 - 财政年份:2019
- 资助金额:
$ 6.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Defining the Molecular Architecture for Transmembrane Acylation by a Membrane Bound O-Acyltransferase
定义膜结合 O-酰基转移酶跨膜酰化的分子结构
- 批准号:
10246913 - 财政年份:2019
- 资助金额:
$ 6.56万 - 项目类别:
Characterization of Xenopus laevis DHAP acyltransferase
非洲爪蟾 DHAP 酰基转移酶的表征
- 批准号:
540689-2019 - 财政年份:2019
- 资助金额:
$ 6.56万 - 项目类别:
University Undergraduate Student Research Awards