Defining the Molecular Architecture for Transmembrane Acylation by a Membrane Bound O-Acyltransferase
定义膜结合 O-酰基转移酶跨膜酰化的分子结构
基本信息
- 批准号:10246913
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAcylationAcyltransferaseAddressArchitectureBinding SitesBiochemicalBioinformaticsBiologicalCatalytic DomainChemicalsComputer ModelsCoupledCysteineDesire for foodDevelopmentDiabetes MellitusDiseaseDockingEnzyme InhibitionEnzymesErinaceidaeFamilyFamily memberFeeding behaviorsFosteringFoundationsGoalsHomeostasisHumanIntegral Membrane ProteinLocationMalignant NeoplasmsMembraneMembrane ProteinsMetabolismMissionModelingMolecularMutagenesisPathway interactionsPharmacologic SubstancePlayPorcupinesProtein FamilyProteinsPublic HealthReportingResearchResistanceRoleSerineSignal PathwaySignal TransductionStructural ModelsStructureSystemTherapeuticUnited States National Institutes of HealthValidationWorkbasebiochemical toolscancer therapycomputerized toolsdesignghrelinglucose metabolismhuman diseaseinhibitor/antagonistinnovationinsightmembermolecular dynamicsnanomolarnovelpeptide hormonepredictive testprotein acyltransferaseprotein structuresmall moleculetherapeutic targettool
项目摘要
Acylated secreted proteins play essential roles in intercellular and organismal signaling pathways implicated in
multiple diseases including diabetes and cancer. Protein-modifying members of the membrane-bound O-
acyltransferase (MBOAT) enzyme family constitute key molecular control points for signaling through their roles
in modifying the secreted proteins ghrelin, Hedgehog, and Wnt. Of these, ghrelin is unique in that it regulates
feeding behavior and energy homeostasis. Since ghrelin requires acylation by GOAT for biological activity, a
detailed understanding of this MBOAT family member is imperative to understand the role of ghrelin in disease
and to target ghrelin-dependent pathways. However, the dearth of information regarding the structure, substrate
binding sites, and catalytic mechanism of GOAT impedes understanding ghrelin signaling and development of
small molecule tools to study the role of GOAT in metabolism-related diseases. There exists an urgent need to
define the structural and catalytic foundations of protein acylation by GOAT, Hhat, and PORCN in order to
understand the molecular basis of their diverse biological roles. The objective in this application is to define the
structural and chemical basis for transmembrane protein acylation by a membrane O-acyltransferase.
The studies proposed herein will develop a molecular-level structural model of GOAT verified and supported
by chemical and biochemical studies. Supported by strong preliminary studies, our objective will be pursued in
the following three Specific Aims: 1) Define the acyl donor and ghrelin binding sites within human GOAT
(hGOAT); 2) Determine the hGOAT catalytic mechanism, and 3) Identify inhibitor binding sites within hGOAT. In
the first Aim, an hGOAT structural model generated by bioinformatic analysis coupled with computational
modeling will guide studies to identify the acyl donor and ghrelin binding sites within hGOAT, with the ultimate
goal of defining how hGOAT accomplishes the topologically challenging transmembrane octanoylation of ghrelin.
In the second Aim, structure-guided mutagenesis and mechanistic probes will reveal the location and
composition of the active site responsible for ghrelin acylation. In the third Aim, inhibitor binding sites within
hGOAT will be identified using cysteine-reactive chemical probes and computational docking studies. This
proposal is innovative because it represents a new and substantive departure from the standard approaches for
investigating the structure and mechanism of membrane-bound enzymes. Our work will establish a novel
powerful and general approach for investigating structurally intractable membrane proteins. The proposed
research is significant because it will generate the first structure of an MBOAT enzyme family protein
acyltransferase while providing insight into the structures and catalytic strategies of MBOAT family members,
which will advance the exploitation of acylated secreted proteins as therapeutic targets for human diseases.
酰化分泌蛋白在细胞间和生物体信号通路中起重要作用,
多种疾病包括糖尿病和癌症。膜结合O-的蛋白质修饰成员
酰基转移酶(MBOAT)家族通过其作用构成信号传导的关键分子控制点
修饰分泌蛋白ghrelin、Hedgehog和Wnt。其中,生长激素释放肽是独特的,因为它调节
摄食行为和能量稳态。由于生长素释放肽需要被GOAT酰化以获得生物活性,
详细了解这个MBOAT家族成员对于了解ghrelin在疾病中的作用至关重要
并针对生长素依赖性途径。然而,缺乏关于结构、基底
结合位点和GOAT的催化机制阻碍了对ghrelin信号传导和
小分子工具来研究GOAT在代谢相关疾病中的作用。迫切需要
通过GOAT、Hhat和PORCN定义蛋白质酰化的结构和催化基础,
了解其不同生物学作用的分子基础。本申请的目的是定义
通过膜O-酰基转移酶跨膜蛋白酰化的结构和化学基础。
本文提出的研究将建立一个经过验证和支持的GOAT分子水平结构模型
通过化学和生物化学研究。在初步研究的支持下,我们将在
以下三个具体目的:1)确定人GOAT中酰基供体和ghrelin的结合位点
(hGOAT); 2)确定hGOAT催化机制,和3)鉴定hGOAT内的抑制剂结合位点。在
第一个目标,通过生物信息学分析与计算相结合产生的hGOAT结构模型,
模型将指导研究,以确定hGOAT内的酰基供体和ghrelin结合位点,最终
目的是定义hGOAT如何完成具有拓扑挑战性的ghrelin跨膜辛酰化。
在第二个目标中,结构引导的诱变和机制探针将揭示位置和
负责胃饥饿素酰化的活性位点的组成。在第三个目标中,
将使用半胱氨酸反应性化学探针和计算对接研究来识别hGOAT。这
建议是创新的,因为它代表了一个新的和实质性的偏离标准的方法,
研究膜结合酶的结构和机制。我们的工作将建立一个小说
研究结构上难处理的膜蛋白的强有力的和通用的方法。拟议
这项研究意义重大,因为它将产生MBOAT酶家族蛋白的第一个结构
酰基转移酶,同时提供深入了解MBOAT家族成员的结构和催化策略,
这将促进利用酰化分泌蛋白作为人类疾病的治疗靶标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Daniel Chisholm其他文献
John Daniel Chisholm的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Daniel Chisholm', 18)}}的其他基金
SYNTHESIS OF AMPHIDINOLIDE P USING RUTHENIUM CATALYSIS
钌催化合成氨吡啶内酯 P
- 批准号:
6377928 - 财政年份:2001
- 资助金额:
$ 33万 - 项目类别:
SYNTHESIS OF AMPHIDINOLIDE P USING RUTHENIUM CATALYSIS
钌催化合成氨吡啶内酯 P
- 批准号:
6136304 - 财政年份:2000
- 资助金额:
$ 33万 - 项目类别:
相似海外基金
Greasing endocytosis in plants - understanding the role of S-acylation in receptor kinase function and internalisation
植物中的润滑内吞作用 - 了解 S-酰化在受体激酶功能和内化中的作用
- 批准号:
BB/Y003756/1 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Research Grant
Ghrelin de-acylation inhibitors as novel compounds for Parkinson's dementia
生长素释放肽去酰化抑制剂作为治疗帕金森痴呆症的新型化合物
- 批准号:
MR/Y503435/1 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Research Grant
S-acylation-dependent regulation of cytokine receptor signaling and cardiac maladaptation
细胞因子受体信号传导和心脏适应不良的 S-酰化依赖性调节
- 批准号:
10561406 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Comprehensive analysis of acidic patch binder using histone acylation catalysts
使用组蛋白酰化催化剂综合分析酸性贴片粘合剂
- 批准号:
22KJ1113 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for JSPS Fellows
S-Acylation of transmembrane proteins in the early secretory pathway
早期分泌途径中跨膜蛋白的 S-酰化
- 批准号:
BB/X001504/1 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Research Grant
N-terminal acylation and sorting of Helicobacter pylori lipoproteins and their role in host response to infection
幽门螺杆菌脂蛋白的 N 末端酰化和分选及其在宿主感染反应中的作用
- 批准号:
10584620 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
The Molecular Mechanisms of Glycolytic Enzyme S-acylation in Neurons
神经元糖酵解酶S-酰化的分子机制
- 批准号:
576016-2022 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Anti-CRISPR-mediated Acylation and Bioreversible Esterification for Precision Genome Editing
用于精准基因组编辑的抗 CRISPR 介导的酰化和生物可逆酯化
- 批准号:
10657417 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
High Throughput Screen for Inhibitors of the YEATS2 Histone Acylation Reader
YEATS2 组蛋白酰化酶抑制剂的高通量筛选
- 批准号:
10389517 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Roles of KAT8 complexes in governing histone acylation and mouse cerebral development
KAT8复合物在控制组蛋白酰化和小鼠大脑发育中的作用
- 批准号:
RGPIN-2019-07122 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Discovery Grants Program - Individual