Decorating chromatin for precise genome editing using CRISPR Cas
使用 CRISPR Cas 修饰染色质以进行精确的基因组编辑
基本信息
- 批准号:10230885
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2021-09-06
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectArchitectureBenchmarkingBiologyCRISPR/Cas technologyCancer ModelCell LineCellsChromatinClustered Regularly Interspaced Short Palindromic RepeatsDNADNA Double Strand BreakDNA Insertion ElementsDNA RepairDNA Repair PathwayDependenceDepositionDisease modelEngineeringEnvironmentEnzymesFamilyFamily memberFlow CytometryGenerationsGenesGeneticGenetic DiseasesGenetic RecombinationGenomeGenomicsGoalsGuide RNAHistonesHot SpotHumanImmunotherapyKnock-outMammalian CellMediatingMeiosisMethyltransferaseNonhomologous DNA End JoiningNucleosomesOccupationsOrganismOutcomePathologyPatternPlantsPositioning AttributeProcessPropertyProteinsPublicationsResearch Project GrantsResearch ProposalsRibonucleasesRoleSiteSystemT cell therapyT-Cell ReceptorT-LymphocyteTechnical ExpertiseTechniquesTestingTrainingTransgenesWorkYeastsbasecancer cellcell typechimeric antigen receptorchromatin modificationengineered T cellsexperimental studygenome editinggenome-widehistone modificationimprovedinsertion/deletion mutationinsightnext generationnext generation sequencingnovelnovel strategiesnucleaseprecise genome editingrepairedtooltool developmenttranscriptome sequencing
项目摘要
Project Summary / Abstract
CRISPR associated (Cas) systems have revolutionized biology by allowing the introduction of targeted double
stranded DNA breaks (DSB). However, in human cells, non-homologous end joining (NHEJ) is the preferred
DSB repair process which often leads to small insertions and deletions (indels) at the site of CRISPR-Cas-
induced DSBs. As a result, CRISPR systems are efficient tools for creating genetic knockouts but making
targeted insertions remains a challenge. Efficient targeted insertions would allow for quick generation of cancer
models and would also pave the way for next generation adoptive T cell therapies, where chimeric antigen
receptor (CAR) transgenes could be inserted at specific genomic sites that improve their ability to destroy cancer
cells. Homology driven repair (HDR) mediated by donor templates is currently the best way to introduce precise
edits and DNA insertions following CRISPR-Cas cutting, but the efficiency is generally low relative to NHEJ, and
strategies to improve it have yielded only small advancements. Here, I propose an approach to improve HDR by
making chromatin more accessible at the CRISPR-Cas induced cut site and decorating adjacent nucleosomes
with H3K36me3, a histone mark known to be involved in mediating HDR. To this end, I have engineered a Cas9-
PRDM9 fusion construct. PRDM9 is a methyltransferase that deposits H3K4me3 and H3K36me3 to mark
recombination hot spots during meiosis and has also been shown to act as a pioneer factor making chromatin
more accessible for downstream processes. In preliminary experiments, this novel fusion construct displays a
2-fold improvement in HDR:indel ratio compared to Cas9 alone. By directly altering chromatin architecture, I
hypothesize that HDR levels can be increased for precise genome editing and targeted DNA insertions across
different cell types and regardless of preexisting chromatin architecture. In the first aim, I plan to investigate how
site-specific chromatin modifications mediate DNA repair following cutting by CRISPR-Cas9. I will also study
whether direct reconfiguration of chromatin architecture via Cas9-PRDM9 fusion can improve homologous
directed repair (HDR). In the second aim, I will investigate the effect on HDR of blunt vs staggered cuts introduced
by different Cas12 family nucleases, including a newly identified hypercompact CasΦ, and whether fusions of
these editors with PRDM9 can improve precise genome editing. Finally, I will investigate how these combined
properties can be harnessed to improve large DNA insertions (>100bp) in both cell lines and human primary T
cells.
项目总结/摘要
CRISPR相关(Cas)系统通过允许引入靶向双链RNA,彻底改变了生物学。
DNA链断裂(DSB)。然而,在人细胞中,非同源末端连接(NHEJ)是优选的。
DSB修复过程通常会导致CRISPR-Cas位点的小插入和缺失(indel)。
诱导DSB。因此,CRISPR系统是创建基因敲除的有效工具,
定向插入仍然是一个挑战。有效的靶向插入将允许快速产生癌症
模型,也将为下一代过继性T细胞疗法铺平道路,其中嵌合抗原
CAR转基因可以插入到特定的基因组位点,从而提高它们摧毁癌症的能力
细胞由供体模板介导的同源性驱动修复(HDR)是目前引入精确修复的最佳方式。
CRISPR-Cas切割后的编辑和DNA插入,但相对于NHEJ,效率通常较低,
改进战略只取得了很小的进展。在这里,我提出了一种改进HDR的方法,
使染色质在CRISPR-Cas诱导的切割位点更容易接近,并装饰相邻的核小体
H3 K36 me 3,一种已知参与介导HDR的组蛋白标记。为此,我设计了一个Cas9-
PRDM 9融合构建体。PRDM 9是一种甲基转移酶,它将H3 K4 me 3和H3 K36 me 3沉积到标记物上,
在减数分裂过程中的重组热点,也已被证明是一个先锋因子,使染色质
更容易进入下游流程。在初步实验中,这种新的融合结构显示出
2-与单独的Cas9相比,HDR:indel比率的倍数改善。通过直接改变染色质结构,
假设HDR水平可以增加,以进行精确的基因组编辑和靶向DNA插入,
不同的细胞类型,而不管预先存在的染色质结构。在第一个目标中,我计划研究如何
位点特异性染色质修饰介导CRISPR-Cas9切割后的DNA修复。我也会学习
通过Cas9-PRDM 9融合的染色质结构的直接重构是否可以改善同源性?
定向修复(HDR)在第二个目标中,我将研究对HDR的影响,钝与交错削减介绍
不同的Cas 12家族核酸酶,包括新鉴定的超紧密CasΦ,以及是否融合了
这些具有PRDM 9的编辑器可以提高精确的基因组编辑。最后,我将研究如何将这些结合起来,
可以利用这些特性来改善细胞系和人原代T细胞中的大DNA插入(> 100 bp),
细胞
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Enrique Lin Shiao其他文献
Enrique Lin Shiao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Enrique Lin Shiao', 18)}}的其他基金
The role of p53 family members in epithelial lineage establishment and maintenance
p53家族成员在上皮谱系建立和维持中的作用
- 批准号:
9332255 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists