Mechanisms of flexible neural decoding in the fly olfactory system
果蝇嗅觉系统灵活的神经解码机制
基本信息
- 批准号:10231888
- 负责人:
- 金额:$ 6.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAfferent NeuronsAlgorithmsAreaAutomobile DrivingBehaviorBehavioralBindingBiologyBrainCellsCodeComplexDataDopamineDopamine ReceptorDrosophila genusDrosophila melanogasterElectrophysiology (science)FoodFoundationsGeneticGoalsHornsHungerInstitutesKnowledgeLateralLinkLobeLogicMapsMediatingMethodsMolecularMolecular BiologyMolecular GeneticsMotivationNational Institute on Deafness and Other Communication DisordersNervous system structureNeuronsOdorant ReceptorsOdorsOlfactory PathwaysOlfactory tractOrganismOutputPatternPeripheralPharmacologyPopulationProcessPropertyProxyQuantitative Reverse Transcriptase PCRReceptor GeneReporterResearchResolutionRoleRouteSatiationSensoryShapesSignal TransductionSmell PerceptionSpecificityStarvationStereotypingStimulusSynapsesSystemTaste PerceptionTechniquesTestingTrainingTranslationsVertebratesWorkbehavioral responsedopaminergic neuronflexibilityflygenetic manipulationin vivoincreased appetitemillisecondneural circuitneural patterningneuroregulationolfactory stimulusoperationoptogeneticspatch clamppostsynapticpostsynaptic neuronsreceptorreceptor expressionrelating to nervous systemresponsesensory inputsensory stimulusspatiotemporaltwo photon microscopytwo-photon
项目摘要
Project Summary/Abstract
Neurons “encode” sensory stimuli into patterns of electrical activity. This activity is then transformed or
“decoded” by downstream neurons to guide behavior. However, in different contexts, the same sensory input
can drive different behavioral outputs. For instance, the smell of food can be attractive leading up to a meal,
but aversive or neutral right after a meal. While we have an emerging understanding of how peripheral sensory
neurons change their encoding, we have almost no understanding of how downstream central neurons decode
this information, or how decoding changes with behavioral contexts, such as hunger. The gap in our
knowledge about neural decoding exists because it is difficult to identify all the neurons in a population that
participate in a code. Additionally, identifying and recording from neurons postsynaptic to that population is
usually restrictive.
Here, I will overcome these barriers to understanding neural decoding by using the tractable olfactory
system of the fruit fly, Drosophila melanogaster. In the fly, 2nd-order projection neurons (PNs, analogous to
mitral/tufted cells in vertebrates) form a well-characterized code for odor. 3rd-order neurons called lateral horn
neurons (LHNs) receive stereotyped olfactory input from PNs innervating multiple glomeruli. The specific
goals of this proposal are to establish how LHNs decode spike patterns from PNs and how
neuromodulatory signaling alters this process. I will use 2-photon optogenetics to directly control spike
patterns in PNs of multiple glomeruli simultaneously with cellular and <10 msec resolution. I will simultaneously
record from identified, postsynaptic LHNs in vivo, to determine what properties of the PN odor code are truly
relevant for driving LHN activity. Then, I will incorporate pharmacology and genetic manipulations to identify
how dopamine signaling changes how LHNs decode PN activity. Finally, I will use established molecular
genetics methods to probe the cellular specificity of hunger-induced changes in dopamine receptor expression
to determine how internal state changes the dopaminergic “landscape” in the lateral horn.
Altogether, this project will provide fundamental knowledge of how the brain reads and dynamically
shapes its own olfactory code at the systems, cellular, and molecular level. This proposal supports my
continued interdisciplinary training in in vivo electrophysiology and molecular biology, and provides new
training in optogenetics and 2-photon microscopy. Moreover, it addresses NIDCD’s stated priorities to
understand the fundamental biology of chemosensory function and the central control of smell.
项目概要/摘要
神经元将感觉刺激“编码”成电活动模式。然后该活动被转化或
由下游神经元“解码”以指导行为。然而,在不同的情境下,相同的感官输入
可以驱动不同的行为输出。例如,吃饭前食物的气味可能很有吸引力,
但饭后立即表现出厌恶或中性。虽然我们对外围感觉如何
神经元改变它们的编码,我们几乎不了解下游中枢神经元如何解码
这些信息,或者解码如何随着行为环境(例如饥饿)而变化。我们的差距
关于神经解码的知识之所以存在,是因为很难识别群体中的所有神经元
参与一个代码。此外,从突触后神经元到该群体的识别和记录是
通常是限制性的。
在这里,我将通过使用易于处理的嗅觉来克服这些理解神经解码的障碍
果蝇系统,果蝇。在飞行中,二阶投影神经元(PN,类似于
脊椎动物的二尖瓣/簇状细胞)形成了良好表征的气味代码。三级神经元称为侧角
神经元 (LHN) 接收来自支配多个肾小球的 PN 的固定嗅觉输入。具体的
该提案的目标是确定 LHN 如何从 PN 中解码尖峰模式以及如何
神经调节信号改变这个过程。我将使用2光子光遗传学来直接控制尖峰
多个肾小球 PN 模式同时具有细胞分辨率和 <10 毫秒分辨率。我会同时
从已识别的体内突触后 LHN 进行记录,以确定 PN 气味代码的真正属性
与推动 LHN 活动相关。然后,我将结合药理学和基因操作来识别
多巴胺信号传导如何改变 LHN 解码 PN 活动的方式。最后,我将使用已建立的分子
遗传学方法探测饥饿引起的多巴胺受体表达变化的细胞特异性
确定内部状态如何改变侧角的多巴胺能“景观”。
总而言之,该项目将提供有关大脑如何阅读和动态阅读的基础知识。
在系统、细胞和分子水平上形成自己的嗅觉密码。这个提案支持我的
继续体内电生理学和分子生物学的跨学科培训,并提供新的
光遗传学和双光子显微镜培训。此外,它还解决了 NIDCD 所声明的优先事项:
了解化学感应功能的基本生物学和气味的中枢控制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kristyn Lizbinski其他文献
Kristyn Lizbinski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kristyn Lizbinski', 18)}}的其他基金
Mechanisms of flexible neural decoding in the fly olfactory system
果蝇嗅觉系统灵活的神经解码机制
- 批准号:
10579330 - 财政年份:2021
- 资助金额:
$ 6.64万 - 项目类别:
Mechanisms of flexible neural decoding in the fly olfactory system
果蝇嗅觉系统灵活的神经解码机制
- 批准号:
10730850 - 财政年份:2021
- 资助金额:
$ 6.64万 - 项目类别:
相似海外基金
How Spinal Afferent Neurons Control Appetite and Thirst
脊髓传入神经元如何控制食欲和口渴
- 批准号:
DP220100070 - 财政年份:2023
- 资助金额:
$ 6.64万 - 项目类别:
Discovery Projects
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
$ 6.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10477437 - 财政年份:2021
- 资助金额:
$ 6.64万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10315571 - 财政年份:2021
- 资助金额:
$ 6.64万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10680037 - 财政年份:2021
- 资助金额:
$ 6.64万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10654779 - 财政年份:2021
- 资助金额:
$ 6.64万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10275133 - 财政年份:2021
- 资助金额:
$ 6.64万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10470747 - 财政年份:2021
- 资助金额:
$ 6.64万 - 项目类别:
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2018
- 资助金额:
$ 6.64万 - 项目类别:
Discovery Grants Program - Individual
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2017
- 资助金额:
$ 6.64万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




