Dissecting the cis-regulatory roles of transposable elements in human cancers
剖析转座元件在人类癌症中的顺式调控作用
基本信息
- 批准号:10231204
- 负责人:
- 金额:$ 11.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:Advisory CommitteesAgingArchitectureAwardBiological AssayCRISPR screenCancer Cell GrowthCancer EtiologyCancer cell lineChIP-seqChromatinClustered Regularly Interspaced Short Palindromic RepeatsDNA Sequence AlterationDNA Transposable ElementsDataDevelopmentDistalEncyclopediasEndogenous RetrovirusesEnhancersEpigenetic ProcessEukaryotic CellFamilyFoundationsFutureGene ExpressionGenesGenetic Enhancer ElementGenetic TranscriptionGenomeGenomicsGenotypeGenotype-Tissue Expression ProjectGoalsHi-CHigher Order Chromatin StructureHumanHuman GenomeIcebergIn VitroInstitutesInsulator ElementsJumping GenesLeadLightMalignant NeoplasmsMentorsMolecularMusMutationOncogene ActivationOncogene DeregulationOncogenesOncogenicOutcomePathway interactionsPatientsPhasePositioning AttributePrimary NeoplasmPropertyRegulationRegulator GenesRegulatory ElementReporterRepressionResearchResearch PersonnelRoleSeriesSomatic CellSuppressor-Effector T-LymphocytesTechnologyTestingThe Cancer Genome AtlasTissuesTrainingTumor Suppressor GenesTumor stageTumor-Suppressor Gene InactivationWorkXenograft Modelbasecancer cellcancer typecareercell growthchromatin remodelingcohesinexperimental studyhuman diseaseinsightinterdisciplinary approachneoplastic celloverexpressionoverexpression analysispost-doctoral trainingpromotertranscriptome sequencingtumorigenesis
项目摘要
Project Summary/Abstract
Nearly one half of the human genome consists of transposable elements (TEs), a.k.a. “jumping genes”;
however, we know surprisingly very little about them. The rise of genomic technologies has begun to shed light
on the multi-faceted functions of TEs, but interrogations of their impact on human diseases are still lacking.
The majority of TEs are suppressed in somatic tissues, but some TE families are consistently re-activated in
cancer. It has been revealed that TEs contribute to tumorigenesis both through active transposition and by
providing alternative promoters to drive oncogene expression. However, these mechanisms may represent the
tip of an iceberg. Recent works from Dr. Zhang and others show that TEs can alter higher-order chromatin
architecture (insulator role) and enhance expression of nearby genes (enhancer role). These findings suggest
the intriguing possibility that re-activation of TEs in cancer may similarly remodel higher-order chromatin
structure and cause oncogene and tumor suppressor mis-regulation, thus contributing to tumorigenesis. This
proposal aims to comprehensively characterize the landscape of re-activated TEs in cancer by leveraging
public consortia data, including the cancer genome atlas (TCGA) and cancer cell line encyclopedia (CCLE). Dr.
Zhang will employ genomic assays and reporter assays to determine the enhancer and insulator properties of
TEs in cancer cell lines (Aim 1). Subsequently, Dr. Zhang will computationally predict and experimentally
validate functional impact of TEs as cis-regulatory elements on the nearby oncogenes and tumor suppressor
genes and cancer cell growth (Aim 2). Finally, Dr. Zhang will investigate the mechanisms causing TE over-
expression in cancer cells (Aim 3). Overall, the results from this proposal will reveal new regulatory roles of
TEs in human diseases, and expand our understanding of the mechanisms leading to gene deregulation and
oncogenesis.
Dr. Zhang's career goal is to lead an independent research group devoted to understanding the
epigenetic dysregulation in human aging and cancer. During the K99 phase, he will continue to receive
computational and experimental training from his postdoctoral mentor Dr. Ren and his advisory committee at
Ludwig Institute and UC San Diego. The rigorous mentored support and results obtained in the K99 phase will
facilitate Dr. Zhang's transition to independence as an investigator in the R00 phase, and lay the foundation for
his future career.
项目总结/摘要
近一半的人类基因组由转座因子(TE)组成,也称为转座因子。“跳跃基因”;
然而,令人惊讶的是,我们对它们知之甚少。基因组技术的兴起已经开始揭示
关于TEs的多方面功能,但对它们对人类疾病的影响的质疑仍然缺乏。
大多数TE在体细胞组织中被抑制,但一些TE家族在体细胞组织中被一致地重新激活。
癌已经揭示,TE通过主动转座和通过免疫调节促进肿瘤发生。
提供替代启动子以驱动癌基因表达。然而,这些机制可能代表了
冰山一角张博士和其他人最近的工作表明,TE可以改变高级染色质
结构(绝缘子作用)和增强附近基因的表达(增强子作用)。这些发现表明
令人感兴趣的可能性是,癌症中TE的重新激活可能类似地重塑高级染色质,
结构并引起癌基因和肿瘤抑制基因错误调节,从而促进肿瘤发生。这
该提案旨在通过利用
公共联盟数据,包括癌症基因组图谱(TCGA)和癌细胞系百科全书(CCLE)。博士
Zhang将采用基因组分析和报告基因分析来确定增强子和绝缘子的特性。
癌细胞系中的TE(Aim 1)。随后,张博士将通过计算预测和实验
验证TE作为顺式调节元件对附近癌基因和肿瘤抑制基因的功能影响
基因和癌细胞生长(Aim 2)。最后,张博士将研究导致TE过度的机制-
在癌细胞中的表达(Aim 3)。总的来说,这项提案的结果将揭示新的监管作用,
TE在人类疾病中的作用,并扩大我们对导致基因失调的机制的理解,
肿瘤发生
张博士的职业目标是领导一个独立的研究小组,致力于了解
人类衰老和癌症的表观遗传失调。在K99阶段,他将继续接受
计算和实验培训,从他的博士后导师任博士和他的顾问委员会在
路德维希研究所和加州大学圣地亚哥分校。在K99阶段获得的严格指导支持和结果将
促进张博士在R 00阶段向独立研究者过渡,并为
他未来的职业生涯。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yanxiao Zhang其他文献
Yanxiao Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yanxiao Zhang', 18)}}的其他基金
Dissecting the cis-regulatory roles of transposable elements in human cancers
剖析转座元件在人类癌症中的顺式调控作用
- 批准号:
10038773 - 财政年份:2020
- 资助金额:
$ 11.37万 - 项目类别:
相似海外基金
Genetic Architecture of Aging-Related TDP-43 and Mixed Pathology Dementia
衰老相关 TDP-43 和混合病理痴呆的遗传结构
- 批准号:
10658215 - 财政年份:2023
- 资助金额:
$ 11.37万 - 项目类别:
Chromatin architecture disruption and the vicious cycle of aging.
染色质结构破坏和衰老的恶性循环。
- 批准号:
10901040 - 财政年份:2023
- 资助金额:
$ 11.37万 - 项目类别:
Impact of Reproductive Aging on the Functional and Structural Architecture of the Human Brain
生殖衰老对人脑功能和结构的影响
- 批准号:
10313384 - 财政年份:2021
- 资助金额:
$ 11.37万 - 项目类别:
Relationship between clonal architecture of aging hematopoiesis and the risk of developing age-associated myeloid cancers.
衰老造血的克隆结构与发生与年龄相关的骨髓癌的风险之间的关系。
- 批准号:
305881 - 财政年份:2014
- 资助金额:
$ 11.37万 - 项目类别:
Operating Grants
Nucleosome architecture in aging and nuclear receptor activation in the liver
衰老中的核小体结构和肝脏中的核受体激活
- 批准号:
9442316 - 财政年份:2014
- 资助金额:
$ 11.37万 - 项目类别:
Nucleosome architecture in aging and nuclear receptor activation in the liver
衰老中的核小体结构和肝脏中的核受体激活
- 批准号:
9026604 - 财政年份:2014
- 资助金额:
$ 11.37万 - 项目类别:
Nucleosome architecture in aging and nuclear receptor activation in the liver
衰老中的核小体结构和肝脏中的核受体激活
- 批准号:
8679341 - 财政年份:2014
- 资助金额:
$ 11.37万 - 项目类别:
Transcriptional Architecture and Chromatin Landscape of Circadian Clocks in Aging
衰老过程中昼夜节律时钟的转录结构和染色质景观
- 批准号:
8707931 - 财政年份:2013
- 资助金额:
$ 11.37万 - 项目类别:
Transcriptional Architecture and Chromatin Landscape of Circadian Clocks in Aging
衰老过程中昼夜节律时钟的转录结构和染色质景观
- 批准号:
9063026 - 财政年份:2013
- 资助金额:
$ 11.37万 - 项目类别:
Transcriptional Architecture and Chromatin Landscape of Circadian Clocks in Aging
衰老过程中昼夜节律时钟的转录结构和染色质景观
- 批准号:
8580066 - 财政年份:2013
- 资助金额:
$ 11.37万 - 项目类别: