Learning an Optimized Variational Network for Medical Image Reconstruction
学习用于医学图像重建的优化变分网络
基本信息
- 批准号:10231217
- 负责人:
- 金额:$ 43.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-30 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAffectAlgorithmsAnatomyAppearanceAreaBlindedCharacteristicsClinicalClinical ProtocolsCommunitiesComputer Vision SystemsConsumptionDataData SetDatabasesDevelopmentDiagnosticDiseaseEnvironmentEvaluation StudiesGoalsHealth Care CostsHumanImageIndividualInterruptionJointsKneeLearningLightMachine LearningMagnetic Resonance ImagingManualsMedical ImagingMethodsModelingMorphologic artifactsMotionMotivationMusculoskeletalNeurologicNoiseOutcomePathologicPathologyPatientsPatternPlant RootsProceduresProcessProtocols documentationPublic HealthReaderReadingResearchSamplingScanningSignal TransductionStep trainingStructureTestingTimeTouch sensationTrainingValidationVariantbaseclinical Diagnosisclinical imagingclinical translationconditioningcostdata acquisitiondata repositorydata spacedeep learningexperienceimage reconstructionimaging modalityimprovedindexinginsightlearning strategynovelpathology imagingpatient populationperformance testsprospectiveradiologistreconstructionresearch clinical testing
项目摘要
Project Summary
We propose a novel way of reconstructing medical images rooted in deep learning and computer vision that
models the process how human radiologists are using years of experience from reading thousands of cases to
recognize anatomical structures, pathologies and image artifacts. Our approach is based on the novel idea of a
variational network, which embeds a generalized compressed sensing concept within a deep learning
framework. We propose to learn a complete reconstruction procedure, including filter kernels and penalty
functions to separate between true image content and artifacts, all parameters that normally have to be tuned
manually as well as the associated numerical algorithm described by this variational network. The training step
is decoupled from the time critical image reconstruction step, which can then be performed in near-real-time
without interruption of clinical workflow. Our preliminary patient data from accelerated magnetic resonance
imaging (MRI) acquisitions suggest that our learning approach outperforms the state-of-the-art of currently
existing image reconstruction methods and is robust with respect to the variations that arise in a daily clinical
imaging situation. In our first aim, we will test the hypothesis that learning can be performed such that it is
robust against changes in data acquisition. In the second aim, we will answer the question if it is possible to
learn a single reconstruction procedure for multiple MR imaging applications. Finally, we will perform a clinical
reader study for 300 patients undergoing imaging for internal derangement of the knee. We will compare our
proposed approach to a clinical standard reconstruction. Our hypothesis is that our approach will lead to the
same clinical diagnosis and patient management decisions when using a 5min exam. The immediate benefit of
the project is to bring accelerated imaging to an application with wide public-health impact, thereby improving
clinical outcomes and reducing health-care costs. Additionally, the insights gained from the developments in
this project will answer the currently most important open questions in the emerging field of machine learning
for medical image reconstruction. Finally, given the recent increase of activities in this field, there is a
significant demand for a publicly available data repository for raw k-space data that can be used for training
and validation. Since all data that will be acquired in this project will be made available to the research
community, this project will be a first step to meet this demand.
项目摘要
我们提出了一种基于深度学习和计算机视觉的重建医学图像的新方法
模拟了人类放射科医生如何利用多年的经验从阅读数千个病例到
识别解剖结构、病理和图像伪影。我们的方法是基于一种新的想法
变分网络,它在深度学习中嵌入了广义压缩感知概念
框架。我们建议学习一个完整的重建过程,包括滤波核和惩罚
用于区分真实图像内容和伪像的函数,通常需要调整所有参数
以及由该变分网络描述的相关联的数值算法。培训步骤
与时间关键的图像重建步骤分离,然后可以近乎实时地执行
而不会中断临床工作流程。我们从加速磁共振获得的初步患者数据
成像(MRI)的获取表明,我们的学习方法优于目前最先进的
现有的图像重建方法,并且对于日常临床中出现的变化是健壮的
成像情况。在我们的第一个目标中,我们将测试学习可以被执行的假设
对数据采集的变化具有很强的抵抗力。在第二个目标中,如果有可能的话,我们将回答这个问题
学习适用于多个磁共振成像应用的单一重建程序。最后,我们将进行一次临床
300名接受膝关节内错位影像检查的患者的阅读研究。我们将比较我们的
提出了临床标准重建的方法。我们的假设是,我们的方法将导致
使用5分钟检查时,相同的临床诊断和患者管理决策。带来的直接好处是
该项目旨在将加速成像应用于对公共健康具有广泛影响的应用程序,从而改善
临床结果和降低医疗保健成本。此外,从发展中获得的洞察力
该项目将回答当前机器学习新兴领域中最重要的开放问题
用于医学图像重建。最后,鉴于最近这一领域的活动有所增加,有一个
对可用于培训的原始k空间数据的公共可用数据储存库的巨大需求
和验证。因为在这个项目中将获得的所有数据都将提供给研究人员
社区,这个项目将是满足这一需求的第一步。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FastMRI Prostate: A Publicly Available, Biparametric MRI Dataset to Advance Machine Learning for Prostate Cancer Imaging
- DOI:10.48550/arxiv.2304.09254
- 发表时间:2023-04
- 期刊:
- 影响因子:0
- 作者:R. Tibrewala;T. Dutt;A. Tong;L. Ginocchio;M. Keerthivasan;S. Baete;S. Chopra;Y. Lui;D. Sodickson;H. Chandarana;Patricia M. Johnson
- 通讯作者:R. Tibrewala;T. Dutt;A. Tong;L. Ginocchio;M. Keerthivasan;S. Baete;S. Chopra;Y. Lui;D. Sodickson;H. Chandarana;Patricia M. Johnson
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patricia Margaret Johnson其他文献
Patricia Margaret Johnson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 43.67万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 43.67万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 43.67万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 43.67万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 43.67万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 43.67万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 43.67万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 43.67万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 43.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 43.67万 - 项目类别:
Studentship