Structure, regulation, and evolution of the splicing machinery

熔接机械的结构、调节和演变

基本信息

  • 批准号:
    10406517
  • 负责人:
  • 金额:
    $ 51.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-16 至 2027-04-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY The complexity of human splicing is daunting, yet intervention in splicing for treatment of diseases holds huge potential. Based on strong preliminary results, we propose three areas of investigation that leverage our group’s deep knowledge of splicing to address critical open questions, and to explore the potential for innovative engineering. The first area addresses the mechanism by which U2 snRNP captures the intron branchpoint early in spliceosome assembly, a step altered by recurrent cancer mutations and targeted in nature by antibiotic-producing bacteria. Using new reporters in which two branchpoints compete for recognition, we have identified a novel splicing fidelity mechanism we call “NO-BP decay,” in which U2 complexes that fail due to aberrant branchpoint selection are destroyed. We will characterize this process, applying a battery of candidate gene-based suppressor screens and biochemical tests in splicing extracts. The second area of investigation addresses how splicing is integrated with transcription and cell growth at the individual gene and cellular levels, an emerging area in need of innovation if splicing is to be successfully engineered. Preliminary results indicate that yeast cells have a limited capacity for splicing that creates competition for pre-mRNAs that is critical to cell function. We will measure both splicing capacity and the dynamics of competition, using RNA sequencing to develop a predictive model that explains how splicing is coordinated at a systems level. To understand the contribution of individual genes to this system we are applying synthetic biology approaches. We have engineered site-specific pauses of RNA polymerase II and shown that they alter splicing efficiency and alternative splicing, by unknown mechanism(s) that we will dissect. We will also explore in detail the role of splicing noise (stochastic variations in splicing output over time) on the ability of splicing to control stable homeostatic expression settings (as it does in many RNA binding protein genes) as well as to control a bistable switch (as it does in the Drosophila Sex lethal gene). These experiments will define the operational principles of simple splicing regulatory circuits. The third area of investigation is focused on the process of intron gain and its roles in eukaryotic gene creation and gene diversification. Our recent discovery that the spliceosome can convert the lariat intron to a true intron circle after splicing indicates that it can carry out reverse splicing reactions in vivo, raising questions about whether and how it might promote formation of new introns. We propose to test biochemical steps predicted to be necessary for spliceosome-mediated intron gain, and have already set up experiments to document intron gain in vivo. Given the fundamental conservation of the splicing machinery, this work promises to translate directly into new understanding of the mechanisms of gene regulation in eukaryotes, including humans. Defects in splicing are frequently recognized as contributors to disease, and interventions that address splicing defects are increasingly successful pathways to treatment.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Manuel Ares其他文献

Manuel Ares的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Manuel Ares', 18)}}的其他基金

Structure, regulation, and evolution of the splicing machinery
熔接机械的结构、调节和演变
  • 批准号:
    10622605
  • 财政年份:
    2022
  • 资助金额:
    $ 51.89万
  • 项目类别:
Genomic Measurement of Alternative Splicing
选择性剪接的基因组测量
  • 批准号:
    8006414
  • 财政年份:
    2009
  • 资助金额:
    $ 51.89万
  • 项目类别:
Genomic Measurement of Alternative Splicing
选择性剪接的基因组测量
  • 批准号:
    8208140
  • 财政年份:
    2009
  • 资助金额:
    $ 51.89万
  • 项目类别:
Genomic Measurement of Alternative Splicing
选择性剪接的基因组测量
  • 批准号:
    7750548
  • 财政年份:
    2009
  • 资助金额:
    $ 51.89万
  • 项目类别:
MOLECULAR AND BIOINFORMATIC IDENTIFICATION AND MAPPING
分子和生物信息学识别和绘图
  • 批准号:
    2749001
  • 财政年份:
    1997
  • 资助金额:
    $ 51.89万
  • 项目类别:
STRUCTURE/FUNCTION OF EUKARYOTIC RNASE III
真核 RNA 酶 III 的结构/功能
  • 批准号:
    2701806
  • 财政年份:
    1997
  • 资助金额:
    $ 51.89万
  • 项目类别:
STRUCTURE/FUNCTION OF EUKARYOTIC RNASE III
真核 RNA 酶 III 的结构/功能
  • 批准号:
    2910298
  • 财政年份:
    1997
  • 资助金额:
    $ 51.89万
  • 项目类别:
MOLECULAR AND BIOINFORMATIC IDENTIFICATION AND MAPPING
分子和生物信息学识别和绘图
  • 批准号:
    2630784
  • 财政年份:
    1997
  • 资助金额:
    $ 51.89万
  • 项目类别:
STRUCTURE/FUNCTION OF EUKARYOTIC RNASE III
真核 RNA 酶 III 的结构/功能
  • 批准号:
    2024112
  • 财政年份:
    1997
  • 资助金额:
    $ 51.89万
  • 项目类别:
STRUCTURE AND FUNCTION OF YEAST SMALL NUCLEAR RNPS
酵母小核RNPS的结构和功能
  • 批准号:
    3072924
  • 财政年份:
    1989
  • 资助金额:
    $ 51.89万
  • 项目类别:

相似海外基金

Alternative splicing of Grin1 controls NMDA receptor function in physiological and disease processes
Grin1 的选择性剪接控制生理和疾病过程中的 NMDA 受体功能
  • 批准号:
    488788
  • 财政年份:
    2023
  • 资助金额:
    $ 51.89万
  • 项目类别:
    Operating Grants
Using proteogenomics to assess the functional impact of alternative splicing events in glioblastoma
使用蛋白质基因组学评估选择性剪接事件对胶质母细胞瘤的功能影响
  • 批准号:
    10577186
  • 财政年份:
    2023
  • 资助金额:
    $ 51.89万
  • 项目类别:
Long Noncoding RNA H19 Mediating Alternative Splicing in ALD Pathogenesis
长非编码 RNA H19 介导 ALD 发病机制中的选择性剪接
  • 批准号:
    10717440
  • 财政年份:
    2023
  • 资助金额:
    $ 51.89万
  • 项目类别:
RBFOX2 deregulation promotes pancreatic cancer progression through alternative splicing
RBFOX2 失调通过选择性剪接促进胰腺癌进展
  • 批准号:
    10638347
  • 财政年份:
    2023
  • 资助金额:
    $ 51.89万
  • 项目类别:
Alternative splicing regulation of CLTC in the heart
心脏中 CLTC 的选择性剪接调节
  • 批准号:
    10749474
  • 财政年份:
    2023
  • 资助金额:
    $ 51.89万
  • 项目类别:
Nitric oxide as a novel regulator of alternative splicing
一氧化氮作为选择性剪接的新型调节剂
  • 批准号:
    10673458
  • 财政年份:
    2023
  • 资助金额:
    $ 51.89万
  • 项目类别:
Alternative splicing as an evolutionary driver of phenotypic plasticity
选择性剪接作为表型可塑性的进化驱动力
  • 批准号:
    2884151
  • 财政年份:
    2023
  • 资助金额:
    $ 51.89万
  • 项目类别:
    Studentship
Rescuing SYNGAP1 haploinsufficiency by redirecting alternative splicing
通过重定向选择性剪接挽救 SYNGAP1 单倍体不足
  • 批准号:
    10660668
  • 财政年份:
    2023
  • 资助金额:
    $ 51.89万
  • 项目类别:
CAREER: Mechanotransduction, transcription, and alternative splicing in cell biology
职业:细胞生物学中的机械转导、转录和选择性剪接
  • 批准号:
    2239056
  • 财政年份:
    2023
  • 资助金额:
    $ 51.89万
  • 项目类别:
    Continuing Grant
Investigating the role of alternative splicing in the islets of Langerhans in developing diabetes.
研究朗格汉斯岛中选择性剪接在糖尿病发生中的作用。
  • 批准号:
    468851650
  • 财政年份:
    2022
  • 资助金额:
    $ 51.89万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了