Virulence Mechanisms of Multifunctional Borrelial Proteins
多功能疏螺旋体蛋白的毒力机制
基本信息
- 批准号:10407450
- 负责人:
- 金额:$ 72.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffinityAmino AcidsAnimal ModelAntibodiesAsiaBacteriaBindingBiochemicalBiological AssayBiophysicsBorreliaBorrelia InfectionsBorrelia afzeliiBorrelia burgdorferiBorrelia burgdorferi GroupBorrelia gariniiBorrelia miyamotoiBorrelia turicataeClassical Complement PathwayClinicalCommunicable DiseasesComplementComplement 1qComplement ActivationComplement component C1rComplexCrystallizationCytolysisDataDiseaseDisease modelEtiologyEuropeEventExperimental ModelsFamilyGenesGeneticGoalsHematogenousHomologous GeneHot SpotHumanImmuneImmunityImmunocompetentImmunomodulatorsImpairmentIn VitroInfectionLipoproteinsLyme DiseaseLyticMeasuresMediatingMedicalMicrobeMicrobiologyMinorModelingMolecularMusNatural ImmunityNatureOrder SpirochaetalesOrthologous GenePathogenesisPathway interactionsPattern RecognitionPeptide HydrolasesPhenotypePhylogenetic AnalysisPlayProteinsReactionRelapsing FeverReportingResolutionRoleSerumSpirochaetales InfectionsStructureSurfaceTestingTicksUnited StatesVector-transmitted infectious diseaseVirulenceX-Ray Crystallographyarmbiophysical techniquescomplement pathwaycomplement systemdesignexperimental studyhuman diseaseimaging approachimmunoregulationin vitro activityin vivoin vivo Modelin vivo imaginginhibitorinterdisciplinary approachlyme pathogenesismouse modelmultidisciplinarymutantpathogenrelapsing fever borreliatick borne spirochetevector-bornevector-borne pathogen
项目摘要
PROJECT SUMMARY
Spirochetes of the Borrelia genus are the cause of several prevalent vector-borne diseases. The most
well-known pathogen from this group is Borrelia burgdorferi sensu stricto, which causes over 300,000 cases of
Lyme disease in the United States each year. B. garinii and B. afzelii, which belong to the B. burgdorferi sensu
lato complex, are the primary agent of Lyme disease in Europe and Asia. Borrelia spirochetes are also the
etiological agent of the ancient human disease relapsing fever, as well as a newly recognized infectious
condition called Borrelia miyamotoi disease. Lyme-associated, relapsing fever-associated, and B. miyamotoi
spirochetes have differing lifecycles and their infections are accompanied by distinct clinical presentations.
However, each of these pathogens are known to encode multifunctional surface-expressed lipoproteins that
interact with vertebrate host molecules. Among these proteins are a small arsenal of immunomodulators that
specifically target and inactivate a primary arm of innate immunity known as the complement system. We have
recently reported two independent lines of evidence that support the hypothesis that one of these pathways,
known as the classical pathway, is important in controlling B. burgdorferi infections. First, we have shown that
mice deficient in the pattern recognition molecule of the classical pathway, C1q, are significantly more
susceptible to B. burgdorferi infection. Secondly, we have shown that the lipoprotein B. burgdorferi BBK32 is a
high-affinity inhibitor of the initiating protease of the classical pathway, C1r.
In Aim 1 of this project we seek to understand the C1r inhibitory activity of BBK32 sensu lato proteins at
the molecular level. In Aim 2 we will determine the immunomodulatory roles and virulence contribution of three
BBK32 orthologues known as FbpA, FbpB, and FbpC which are found uniquely in relapsing fever and B.
miyamotoi spirochetes. In Aim 3 we will delineate the role of C1r inhibition in borrelial pathogenesis using in
vivo models of disease. To achieve this, we propose a multi-disciplinary strategy that employs x-ray
crystallography, biophysical approaches, and complement functional assays to pinpoint key ‘hot-spot’ residues
on BBK32 that give rise to its potent anti-C1r activity. These data will inform the design of bbk32 mutants which
will be used in mouse infectivity studies to connect structural features of BBK32, at the amino-acid level, to an
in vivo phenotype. Parallel studies will use genetic deletion mutants of fbp genes from the relapsing fever-
associated spirochetes B. turicatae and B. hermsii. These studies will be paired with experimental models of
Lyme and relapsing fever borrelioses using C1r-/- mice to better understand the role of the classical pathway
initiating protease in the control of borrelial infections. By addressing fundamental questions of how medically
important Borrelia spirochetes recognize and evade host immunity, the studies proposed here stand to have a
broad and significant impact on the field of bacterial pathogenesis.
项目摘要
伯罗利属的螺旋体是几种普遍的载体传播疾病的原因。最多
该组众所周知的病原体是Borrelia burgdorferi sensu stricto,它导致30万例
每年在美国莱姆病。 B. Garinii和B. Afzelii,属于B. burgdorferi sensu
LATO综合体是欧洲和亚洲莱姆病的主要药物。伯氏螺旋体也是
古代人类疾病的病因学药,以及新认可的感染力
疾病称为宫林氏菌病。莱姆相关,继电器发烧相关和宫本芽孢杆菌
螺旋体具有不同的生命周期,其感染是通过不同的临床表现来完成的。
但是,已知这些病原体中的每一个都编码多功能表达表达的脂蛋白
与脊椎动物宿主分子相互作用。这些蛋白质中有一小部分免疫调节剂
特别针对和灭活了先天免疫的主要部门,称为完成系统。我们有
最近报道了两条独立的证据,这些证据支持以下假设。
被称为经典途径,对于控制伯氏芽孢杆菌感染很重要。首先,我们已经表明
经典途径C1q的模式识别分子缺乏的小鼠明显更多
容易受到B. burgdorferi感染的影响。其次,我们已经证明了脂蛋白B. burgdorferi bbk32是一个
经典途径启动蛋白酶的高亲和力抑制剂,C1R。
在该项目的目标1中,我们试图了解BBK32 Sensu Lato蛋白的C1R抑制活性
分子水平。在AIM 2中,我们将确定三个的免疫调节作用和病毒贡献
BBK32直系同源物称为FBPA,FBPB和FBPC,它们在复发性发烧和B中独特地发现。
Miyamotoi螺旋体。在AIM 3中,我们将描述C1R抑制在使用IN中的骨质发病机理中的作用
体内疾病模型。为了实现这一目标,我们提出了一种雇员X射线的多学科策略
晶体学,生物物理方法和补充功能测定,以查明钥匙“热点”残差
在BBK32上引起其潜在的抗C1R活性。这些数据将为BBK32突变体的设计提供信息
将用于小鼠感染研究中,以将BBK32的结构特征(在氨基酸水平)连接到
体内表型。平行研究将使用复发性发烧中的FBP基因的遗传缺失突变体
相关的螺旋体B. turicatae和B. hermsii。这些研究将与
使用C1R - / - 小鼠更好地了解经典途径的作用
在控制疏松症感染的控制中引发蛋白酶。通过解决有关如何在医学上的基本问题
重要的Borrelia螺旋体认识并逃避了宿主免疫,此处提出的研究具有
对细菌发病机理领域的广泛而显着影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brandon Lee Garcia其他文献
Brandon Lee Garcia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brandon Lee Garcia', 18)}}的其他基金
Virulence Mechanisms of Multifunctional Borrelial Proteins
多功能疏螺旋体蛋白的毒力机制
- 批准号:
10192642 - 财政年份:2020
- 资助金额:
$ 72.31万 - 项目类别:
Virulence Mechanisms of Multifunctional Borrelial Proteins
多功能疏螺旋体蛋白的毒力机制
- 批准号:
10620725 - 财政年份:2020
- 资助金额:
$ 72.31万 - 项目类别:
Virulence Mechanisms of Multifunctional Borrelial Proteins
多功能疏螺旋体蛋白的毒力机制
- 批准号:
9985574 - 财政年份:2019
- 资助金额:
$ 72.31万 - 项目类别:
Development of Small Molecule Inhibitors of the Classical Complement Pathway
经典补体途径小分子抑制剂的开发
- 批准号:
9375741 - 财政年份:2017
- 资助金额:
$ 72.31万 - 项目类别:
相似国自然基金
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多尺度表征和跨模态语义匹配的药物-靶标结合亲和力预测方法研究
- 批准号:62302456
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
框架核酸多价人工抗体增强靶细胞亲和力用于耐药性肿瘤治疗
- 批准号:32301185
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Engineered tissue arrays to streamline deimmunized DMD gene therapy vectors
工程组织阵列可简化去免疫 DMD 基因治疗载体
- 批准号:
10724882 - 财政年份:2023
- 资助金额:
$ 72.31万 - 项目类别:
Optical platform for functional longitudinal imaging of metabolite uptake in vivo
用于体内代谢物摄取功能纵向成像的光学平台
- 批准号:
10585764 - 财政年份:2023
- 资助金额:
$ 72.31万 - 项目类别:
Diagnostic aptamer reagents to develop multi-analyte blood test for pre-clinical, mild and moderate Alzheimer's disease
诊断适体试剂用于开发针对临床前、轻度和中度阿尔茨海默病的多分析物血液检测
- 批准号:
10597840 - 财政年份:2023
- 资助金额:
$ 72.31万 - 项目类别:
DeADP-ribosylation of host targets mediated by a bacterial effector
由细菌效应子介导的宿主靶标的 DeADP-核糖基化
- 批准号:
10667971 - 财政年份:2023
- 资助金额:
$ 72.31万 - 项目类别:
Designing novel therapeutics for Alzheimer’s disease using structural studies of tau
利用 tau 蛋白结构研究设计治疗阿尔茨海默病的新疗法
- 批准号:
10678341 - 财政年份:2023
- 资助金额:
$ 72.31万 - 项目类别: