Development of Small Molecule Inhibitors of the Classical Complement Pathway
经典补体途径小分子抑制剂的开发
基本信息
- 批准号:9375741
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAllelesAlzheimer&aposs DiseaseAlzheimer&aposs disease modelAmericanAntigen-Antibody ComplexApolipoprotein EAstrocytesAutoimmune ProcessBindingBinding ProteinsBinding SitesBiological AssayBorreliaBrain DiseasesClassical Complement PathwayClinicalCompetitive BindingComplementComplement 1 InactivatorsComplement 1qComplement component C1rComplement component C1sComplexCytolysisDepositionDevelopmentDiseaseDrug DesignEnzyme PrecursorsEventFutureGoalsHomeostasisHumanImmunologic SurveillanceIn VitroInflammatoryInterventionKnowledgeLeadLibrariesLinkMaintenanceMapsMediatingMembraneMethodologyMicrogliaModelingModernizationMolecularMolecular ConformationNatural ImmunityNatural ProductsNerve DegenerationNeurodegenerative DisordersOpsoninPathologyPathway interactionsPattern RecognitionPeptide HydrolasesPhagocytesPharmaceutical ChemistryPharmaceutical PreparationsPhysiologicalPhysiological ProcessesPlasma ProteinsPlayPositioning AttributeRecruitment ActivityResolutionRoleSerine ProteaseSerine Proteinase InhibitorsSerumSignal TransductionSiteSpecificityStructureSubstrate SpecificitySurfaceSurface Plasmon ResonanceSynapsesSystemTechnologyTherapeuticTherapeutic InterventionTriageX-Ray Crystallographyactivation productadaptive immunityantimicrobialarmbasecomplement C3 precursorcomplement pathwaycomplement systemdrug developmentdrug discoveryhuman diseasein vitro Assayinhibitor/antagonistmicrobialmouse modelmutantnew therapeutic targetnovelnovel strategiesnovel therapeuticsprotein protein interactionscaffoldscreeningsenescencesingle moleculesmall moleculesmall molecule inhibitorsmall molecule librariessynaptic pruning
项目摘要
The human complement system is a tightly regulated set of ~30 serum or membrane-bound
proteins which is best known for its role as a ‘first-line-of-defense’ against microbial intruders. A modern
view places complement at the center of a number of important physiological processes including
adaptive immunity crosstalk, developmental roles, and as a critical player in maintaining homeostasis.
A large number of human autoimmune, inflammatory, and neurodegenerative diseases are now linked
to the loss of the fine-tuned control of the complement cascade. Recently, the dysregulation of the
classical complement pathway has been shown to play a causal role in murine models of Alzheimer’s
disease. With 5 million Americans currently suffering from Alzheimer’s disease, and a predicted 14
million by 2050, development of new treatments is desperately needed. Unfortunately, the clinical
pipeline of complement-directed drugs is currently inadequately positioned to produce therapies for
classical pathway-driven neurodegenerative conditions. To meet this need, the fundamental goal of this
project is to develop high quality, high specificity small molecule inhibitors of the classical complement
pathway.
The first component of complement, C1, is the multi-subunit zymogen of the classical pathway
and consists a single molecule of C1q in complex with the serine protease heterotetramer C1r2C1s2.
C1r is the initiator protease of the pathway and has the unique feature of requiring the molecular context
of C1 to carry out its only known physiological function (i.e. activation of the classical pathway). In this
project we will attempt to exploit this molecular provision by identifying C1r-binding small molecules
which disrupt the stability of C1. To achieve this we will use fragment based drug design and natural
product-inspired chemical libraries in combination with an surface plasmon resonance-based screening
methodology. We will then implement a novel strategy to isolate compounds with high C1r-specificty
and high complement inhibitory potential. Finally, x-ray crystallography will be used to reveal the binding
mode of prioritized hit compounds. This project will provide the framework for structure-based drug
design efforts for the development of novel complement-directed therapeutics for treatment of classical
pathway-related human diseases such as Alzheimer’s disease.
人类完成系统是一组约30张血清或膜结合的集合
蛋白质以其对微生物入侵者的“防御者”角色而闻名。现代
在许多重要的物理过程的中心查看位置,包括
适应性免疫学串扰,发育角色以及维持体内平衡的关键参与者。
现在有大量的人类自身免疫性,炎症和神经退行性疾病
损失了完成级联的微调控制。最近,失调
经典补体途径已显示在阿尔茨海默氏症的鼠模型中起因果关系
疾病。目前有500万美国人患有阿尔茨海默氏病,预计14
到2050年,迫切需要开发新的治疗方法。不幸的是,临床
目前,补体指导药物的管道无法实现生产的疗法
经典途径驱动的神经退行性条件。为了满足这一需求,这是基本目标
项目是为了发展经典完成的高品质,高特异性小分子抑制剂
路径。
完成的第一个组成部分C1是经典途径的多生Zymogen
并由与丝氨酸蛋白酶异驱精C1R2C1S2的C1Q的单个分子组成。
C1R是该途径的引发剂蛋白酶,具有需要分子环境的独特特征
C1执行其唯一已知的身体功能(即经典途径的激活)。在这个
项目我们将尝试通过识别C1R结合小分子来利用这一分子条款
破坏了C1的稳定性。为了实现这一目标,我们将使用基于碎片的药物设计和自然
产品启发的化学文库与表面等离子体共振的筛选结合
方法论。然后,我们将实施一种新颖的策略来隔离C1R特异性高的化合物
和高完成抑制潜力。最后,X射线晶体学将用于揭示结合
优先级命中化合物的模式。该项目将为基于结构的药物提供框架
为开发新颖的完整疗法的设计工作,用于治疗古典
与途径有关的人类疾病,例如阿尔茨海默氏病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brandon Lee Garcia其他文献
Brandon Lee Garcia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brandon Lee Garcia', 18)}}的其他基金
Virulence Mechanisms of Multifunctional Borrelial Proteins
多功能疏螺旋体蛋白的毒力机制
- 批准号:
10407450 - 财政年份:2020
- 资助金额:
$ 22.5万 - 项目类别:
Virulence Mechanisms of Multifunctional Borrelial Proteins
多功能疏螺旋体蛋白的毒力机制
- 批准号:
10192642 - 财政年份:2020
- 资助金额:
$ 22.5万 - 项目类别:
Virulence Mechanisms of Multifunctional Borrelial Proteins
多功能疏螺旋体蛋白的毒力机制
- 批准号:
10620725 - 财政年份:2020
- 资助金额:
$ 22.5万 - 项目类别:
Virulence Mechanisms of Multifunctional Borrelial Proteins
多功能疏螺旋体蛋白的毒力机制
- 批准号:
9985574 - 财政年份:2019
- 资助金额:
$ 22.5万 - 项目类别:
相似国自然基金
KIR3DL1等位基因启动子序列变异影响其差异表达的分子机制研究
- 批准号:82200258
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
KIR3DL1等位基因启动子序列变异影响其差异表达的分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NUP205双等位基因突变影响纤毛发生而致内脏转位合并先天性心脏病的机理研究
- 批准号:82171845
- 批准年份:2021
- 资助金额:54.00 万元
- 项目类别:面上项目
NUP205双等位基因突变影响纤毛发生而致内脏转位合并先天性心脏病的机理研究
- 批准号:
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
全基因组范围内揭示杂交肉兔等位基因特异性表达模式对杂种优势遗传基础的影响
- 批准号:32102530
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Activity-Dependent Regulation of CaMKII and Synaptic Plasticity
CaMKII 和突触可塑性的活动依赖性调节
- 批准号:
10817516 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Genetic and Environmental Influences on Individual Sweet Preference Across Ancestry Groups in the U.S.
遗传和环境对美国不同血统群体个体甜味偏好的影响
- 批准号:
10709381 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Multi-omic phenotyping of human transcriptional regulators
人类转录调节因子的多组学表型分析
- 批准号:
10733155 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
The immunogenicity and pathogenicity of HLA-DQ in solid organ transplantation
HLA-DQ在实体器官移植中的免疫原性和致病性
- 批准号:
10658665 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别: