Decoding the interactions between T cell receptors and peptide-MHC

解码 T 细胞受体和肽-MHC 之间的相互作用

基本信息

  • 批准号:
    10406323
  • 负责人:
  • 金额:
    $ 68.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-20 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY T cell receptor (TCR) recognition of a cognate peptide-major histocompatibility complex (pMHC) is central to adaptive immune recognition. Certain features of this interaction are well-understood, including many of the rules governing peptide binding to MHC. However, our ability to model the ternary TCR:pMHC complex remains limited for three primary reasons: (1) Data availability; (2) Binding; and (3) Cross-reactivity. In elucidating the rules by which the TCR:pMHC interface operates, these efforts stand to address fundamental questions at the heart of adaptive immune recognition, with important theoretical and practical implications that include the potential for the forward design of novel receptors with selected specificities, the “decoding” of the recent influx of TCR sequencing data for specific antigenic targets, and an understanding of the cross-reactive potential of the repertoire. Previously, we developed novel approaches that provided training data for the construction of algorithms that predict various aspects of TCR specificity (1), including an algorithm we call TCRdist - a simple and effective distance measure to compare TCR sequences. TCRdist can be used to cluster antigen-specific TCR sequences and can be incorporated into a distance-based classifier capable of correctly assigning previously unobserved TCRs to characterized repertoires with robust sensitivity and specificity. Taken together, the results of these experiments and the general success of the TCRdist algorithm provide compelling evidence for the central premises of this proposal: Given a sufficient number of experimentally verified epitope- specific TCR sequences, the epitope specificity of a TCR can be predicted from its sequence; furthermore, the generation of epitope-specific TCR sequence data, in combination with structurally informed computational analysis, provides a roadmap for building a predictive model of the TCR:pMHC interaction. While we have made significant progress in this line of inquiry, the largest remaining hurdle is the apparent broad cross-reactivity within the repertoire. In order to fully elucidate the complex network of interactions among TCRs and pMHCs, the questions we must address then are: what do diverse TCRs that see the same pMHC have in common? And what do diverse pMHCs that are seen by the same TCRs have in common? The ultimate consequence of these studies, beyond their immediate biological applications, will be to assist in the development of the next generation of analytical tools for the modeling of TCR:pMHC interaction, leading to the ultimate goal of a true “decoder” for this essential interface.
项目总结 T细胞受体(TCR)对同源肽-主要组织相容性复合体(PMHC)的识别是 适应性免疫识别。这种互动的某些特征是众所周知的,包括许多规则 与MHC结合的控制肽。然而,我们对三元TCR:pMHC络合物进行建模的能力仍然有限 主要原因有三:(1)数据可用性;(2)绑定;(3)交叉反应。通过以下方式阐明规则 由TCR:pMHC接口操作,这些努力将解决核心问题 适应性免疫识别,具有重要的理论和实践意义,包括 具有特定特异性的新型受体的正向设计,对最近涌入的TCR的“解码” 对特定抗原靶标的测序数据,以及对 曲目。以前,我们开发了新的方法,为构建 预测TCR特异性的各个方面的算法(1),包括我们称为TCRdist的算法-简单 和有效距离度量来比较TCR序列。TCRdist可用于聚集特异性抗原 TCR序列,并可以结合到基于距离的分类器中,能够正确地分配 以前未观察到的TCR具有强大的敏感性和特异性。加在一起, 这些实验的结果和TCRdist算法的总体成功提供了令人信服的证据 对于这项提议的中心前提:假设有足够数量的经实验验证的表位- 特定的TCR序列,根据ITS序列可以预测TCR的表位特异性; 此外,表位特异性TCR序列数据的生成与结构上的结合 知情的计算分析,为建立TCR的预测模型提供了路线图:pMHC 互动。虽然我们在这方面取得了重大进展,但仍然存在的最大障碍是 曲目中明显存在广泛的交叉反应。为了充分阐明生物多样性的复杂网络 TCR和PMHC之间的相互作用,那么我们必须解决的问题是:不同的TCR看到什么 相同的pMHC有共同之处吗?同样的TCR看到的不同的PMHC在 普通吗?这些研究的最终结果,除了它们直接的生物学应用外,将是 协助开发下一代分析工具,用于TCR的建模:pMHC相互作用, 最终目标是为这个基本接口提供一个真正的“解码器”。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul G. Thomas其他文献

Pre-existing immunity to a nucleic acid contaminant-derived antigen mediates transaminitis and resultant diminished transgene expression in a mouse model of hepatic rAAV-mediated gene transfer.
在肝 rAAV 介导的基因转移小鼠模型中,对核酸污染物衍生抗原的预先存在的免疫力介导转氨炎,并由此导致转基因表达减少。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Mark A. Brimble;Christopher L Morton;Stephen M. Winston;Isaiah L. Reeves;Yunyu Spence;Pei;Jungfang Zhou;A. Nathwani;Paul G. Thomas;Aisha Souquette;A. Davidoff
  • 通讯作者:
    A. Davidoff
<em>Dnmt3a</em> Mutant Hematopoietic Stem Cells Produce Hyperactive T Cells with Increased Alloimmune and Anti-Leukemic Activity
  • DOI:
    10.1182/blood-2024-208666
  • 发表时间:
    2024-11-05
  • 期刊:
  • 影响因子:
  • 作者:
    LaShanale Wallace;Mark Engelken;Jacquelyn A. Myers;John Harper;Brandi Clark;David Cullins;Jaquelyn T. Zoine;Raghuvaran Shanmugam;Stefan Schattgen;M. Paulina Velasquez;Heather Sheppard;Jeremy Chase Crawford;Paul G. Thomas;Esther A. Obeng
  • 通讯作者:
    Esther A. Obeng
Principles and therapeutic applications of adaptive immunity
适应性免疫的原理与治疗应用
  • DOI:
    10.1016/j.cell.2024.03.037
  • 发表时间:
    2024-04-25
  • 期刊:
  • 影响因子:
    42.500
  • 作者:
    Hongbo Chi;Marion Pepper;Paul G. Thomas
  • 通讯作者:
    Paul G. Thomas
emIdentification and Functional Validation of Neoantigen-Specific T Cells in Pediatric Patients with Fusion-Derived Acute Leukemias/em
融合衍生急性白血病儿科患者中新抗原特异性 T 细胞的鉴定和功能验证
  • DOI:
    10.1182/blood-2023-184918
  • 发表时间:
    2023-11-02
  • 期刊:
  • 影响因子:
    23.100
  • 作者:
    Ricky Tirtakusuma;Mohamed A. Ghonim;Stefan Schattgen;Jing Ma;Brad Muller;Kasi Vegesana;Emma Allen;Jeffery M. Klco;Paul G. Thomas
  • 通讯作者:
    Paul G. Thomas
Treatment of hepatitis C in a pediatric patient using simeprevir and sofosbuvir immediately after an umbilical cord blood transplantation
脐带血移植后立即使用 simeprevir 和 sofosbuvir 治疗儿科患者丙型肝炎
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Paul G. Thomas;Teresa Santiago;M. Dallas
  • 通讯作者:
    M. Dallas

Paul G. Thomas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul G. Thomas', 18)}}的其他基金

Neoantigen-specific T cell responses for Fibrolamellar Hepatocellular Carcinoma
纤维板层肝细胞癌的新抗原特异性 T 细胞反应
  • 批准号:
    10609918
  • 财政年份:
    2023
  • 资助金额:
    $ 68.19万
  • 项目类别:
Neoantigen-specific T cell responses for Fibrolamellar Hepatocellular Carcinoma
纤维板层肝细胞癌的新抗原特异性 T 细胞反应
  • 批准号:
    10467512
  • 财政年份:
    2022
  • 资助金额:
    $ 68.19万
  • 项目类别:
DECODING THE INTERACTIONS BETWEEN T CELL RECEPTORS AND PEPTIDE-MHC
解码 T 细胞受体和肽-MHC 之间的相互作用
  • 批准号:
    10682160
  • 财政年份:
    2018
  • 资助金额:
    $ 68.19万
  • 项目类别:
Decoding the interactions between T cell receptors and peptide-MHC
解码 T 细胞受体和肽-MHC 之间的相互作用
  • 批准号:
    10158266
  • 财政年份:
    2018
  • 资助金额:
    $ 68.19万
  • 项目类别:
A protective role for gamma delta T cells in respiratory infection
γδT 细胞在呼吸道感染中的保护作用
  • 批准号:
    9234456
  • 财政年份:
    2016
  • 资助金额:
    $ 68.19万
  • 项目类别:
A protective role for gamma delta T cells in respiratory infection
γδT 细胞在呼吸道感染中的保护作用
  • 批准号:
    9113835
  • 财政年份:
    2016
  • 资助金额:
    $ 68.19万
  • 项目类别:
Mechanisms to diversify repertoire and modify T cell activity after infection
感染后 T 细胞活性多样化和改变的机制
  • 批准号:
    8573498
  • 财政年份:
    2013
  • 资助金额:
    $ 68.19万
  • 项目类别:
Mechanisms to diversify repertoire and modify T cell activity after infection
感染后 T 细胞活性多样化和改变的机制
  • 批准号:
    8709989
  • 财政年份:
    2013
  • 资助金额:
    $ 68.19万
  • 项目类别:
Mechanisms to diversify repertoire and modify T cell activity after infection
感染后 T 细胞活性多样化和改变的机制
  • 批准号:
    9319117
  • 财政年份:
    2013
  • 资助金额:
    $ 68.19万
  • 项目类别:
Quantifying and modeling influenza viral dynamics and host responses
流感病毒动态和宿主反应的量化和建模
  • 批准号:
    8321729
  • 财政年份:
    2011
  • 资助金额:
    $ 68.19万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 68.19万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 68.19万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 68.19万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 68.19万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 68.19万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 68.19万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 68.19万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 68.19万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 68.19万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.19万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了