Multiscale Simulations of Biological Systems and Processes

生物系统和过程的多尺度模拟

基本信息

  • 批准号:
    10406537
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-05-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

Project Summary In order to advance the understanding of life processes at the molecular level, we developed multiscale computer simulations that can treat complex biological systems. We intend to apply such strategies to systems which are to important medical problems. Our proposed projects are listed below. A.1 Enzymatic Processes: By exploiting our advances in multiscale modeling, we intend to progress in the following directions: (a) Quantifying computer-aided enzyme design by: (i) reproducing the observed trend in experiments of directed evolution using automatic configuration generator coupled with EVB simulations; (ii) reproducing the catalytic activity of experimentally designed enzymes; (iii) improving the action of promiscuous enzymes; (iv) destroying and rebuilding active sites. Our studies will be done in collaboration with key experimental groups. (b) Continuing to advance the quantitative computational methods, including: (i) using our PD QM(ai)/MM method in for evaluating the ab initio free energy surfaces of enzymatic reactions; (ii) Advancing a maximum entropy approach for fast screening (iii) Quantifying the relationship between folding and catalysis; (c) Conducting studies on important classes of enzymes; (d) Exploring the relations of our findings to medical problems such as the Covid-19 pandemic, drug resistance and other topics like CRISPR. A.2 Multiscale Modeling of the energetics and functions of complex biological systems: Basic functions of living cells are underpinned by proteins that guide the transport of electrons, protons, and ions. Thus, it is crucial to quantitatively explore and exploit the structure-function correlations using computer simulation approaches. We have made a major progress in developing microscopic and coarse grained (CG) approaches for such systems, and we will advance them in the following directions: (a) Simulating the proton transfer (PTR) gating mechanism of cytochrome c oxidase (CcO) and extending our recent studies of FO-ATPase. (b) Exploiting our advances in modeling voltage-gated ion channels for the following purposes: (i) to quantify the interplay between the electrode potential and the protein/membrane energy landscape, (ii) to reproduce the gating voltage and the subsequent ion current and its selectivity using both CG and explicit MC electrolyte models, (iii) to simulating the action of GPCRs and transporters by CG approach, (iv) to explore the relations between our finding and various diseases.
项目摘要 为了在分子水平上推进对生命过程的理解,我们发展了多尺度计算机 可以处理复杂生物系统的模拟。我们打算将这些策略应用于以下系统: 重要的医疗问题。我们建议的项目如下。 A.1酶促过程:通过利用我们在多尺度建模方面的进展,我们打算在酶促过程方面取得进展。 (a)通过以下方式量化计算机辅助酶设计:(i)再现观察到的以下趋势: 使用自动配置生成器与EVB模拟相结合的定向进化实验;(ii) 复制实验设计的酶的催化活性;(iii)改善混杂酶的作用。 酶;(iv)破坏和重建活性位点。我们的研究将与主要的 实验组。(b)继续推进定量计算方法,包括:(i)使用我们的 用PD QM(ai)/MM方法计算酶促反应的从头算自由能表面;(ii)推进 最大熵方法快速筛选(iii)量化折叠和催化之间的关系; (c)对重要的酶类别进行研究;(d)探讨我们的研究结果与医学的关系 新冠肺炎大流行、耐药性和CRISPR等其他问题。 A.2复杂生物系统的能量学和功能的多尺度建模:基本功能 活细胞的生命是由蛋白质支撑的,蛋白质引导电子、质子和离子的运输。照经上所 利用计算机模拟定量探索和利用结构-功能相关性至关重要 接近。我们在发展微观和粗粒度(CG)方法方面取得了重大进展 对于这样的系统,我们将在以下方向推进:(a)模拟质子转移(PTR) 细胞色素c氧化酶(CcO)的门控机制,并扩展了我们最近对FO-ATPase的研究。(b)利用 我们在模拟电压门控离子通道方面的进展,目的如下:(i)量化相互作用 在电极电势和蛋白质/膜能量景观之间,(ii)再现门控电压 和随后的离子电流及其选择性,使用CG和显式MC电解质模型,(iii) 通过CG方法模拟GPCRs和转运蛋白的作用,(iv)探索我们的GPCRs和转运蛋白之间的关系。 发现和各种疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ARIEH WARSHEL其他文献

ARIEH WARSHEL的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ARIEH WARSHEL', 18)}}的其他基金

Multiscale Simulations of Biological Systems and Processes
生物系统和过程的多尺度模拟
  • 批准号:
    9922965
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Multiscale Simulations of Biological Systems and Processes
生物系统和过程的多尺度模拟
  • 批准号:
    10709506
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Multiscale Simulations of Biological Systems and Processes
生物系统和过程的多尺度模拟
  • 批准号:
    9275185
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Computational Core
计算核心
  • 批准号:
    8591739
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
Computer Simulation Studies of the Origin of DNA Polymerase Fidelity
DNA 聚合酶保真度起源的计算机模拟研究
  • 批准号:
    8591706
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
Computational Core
计算核心
  • 批准号:
    7464359
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
Computer Simulation Studies of the Origin of DNA Polymerase
DNA聚合酶起源的计算机模拟研究
  • 批准号:
    7464334
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
CORE--Computational Core
CORE--计算核心
  • 批准号:
    6990378
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
Computer Simulation Studies of the Origin of DNA
DNA起源的计算机模拟研究
  • 批准号:
    6990383
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
COMPUTER SIMULATION OF ELECTRON TRANSFER REACTIONS
电子转移反应的计算机模拟
  • 批准号:
    2022231
  • 财政年份:
    1988
  • 资助金额:
    --
  • 项目类别:

相似海外基金

Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
  • 批准号:
    23K04919
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
  • 批准号:
    22KJ2957
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
  • 批准号:
    23K04494
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
  • 批准号:
    23K13831
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
  • 批准号:
    2238379
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
  • 批准号:
    2154399
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
  • 批准号:
    RGPIN-2019-06633
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了