Multiscale Simulations of Biological Systems and Processes
生物系统和过程的多尺度模拟
基本信息
- 批准号:9922965
- 负责人:
- 金额:$ 57.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:ATP phosphohydrolaseAmino Acid SequenceBacteriorhodopsinsBiochemicalBiochemical ProcessBiochemical ReactionBioenergeticsBiologicalBiological ProcessCatalysisCellsChargeCollaborationsComputer AssistedComputer SimulationComputing MethodologiesCoupledDevelopmentDirected Molecular EvolutionDiseaseDrug TransportDrug resistanceElectrodesElectron TransportEnzymesEvolutionFree EnergyGrainHealthHumanIon ChannelIonsLeadLifeMedicalMembraneMembrane PotentialsMembrane ProteinsMethodsMicroscopicModelingMolecularMutationOrganismOxidasesOxidation-ReductionPathway interactionsPharmaceutical PreparationsPlayPositioning AttributeProcessProteinsProton PumpProtonsResearchRoleRotationSignal TransductionStructureSurfaceSystemTherapeutic InterventionTimebiological systemscomplex biological systemscytochrome c oxidasedesigndrug developmentdrug discoveryexperimental studyfightingfrontierimprovedmembrane modelmulti-scale modelingneurotransmissionpH gradientpathogensimulationtargeted treatmenttoolvectorvoltage
项目摘要
Project Summary
The advance in understanding of the molecular basis of human health in the past few decades has been
tremendous. However, we are far behind in terms of the conversion of the information about structures and
sequence of proteins into the corresponding functions. The progress on this front can be greatly advanced by
multiscale computer simulations that can treat different systems with increased level of complexity. At this
stage we are ready to apply such methods to systems whose understanding are relevant to important medical
problems, including studies of enzyme design, drug resistance and transport mechanism of protons and ions,
thereby elucidating the basis of catalytic control, bioenergetics and energy transduction in living systems. Our
proposed concerted directions are listed below.
A.1 Control of Biochemical Processes by Enzymes: Many diseases can be controlled by developing drugs
that block the action of enzymes in crucial biological pathways. The great advances in structural and
biochemical studies have not yet led to a quantitative understanding of the energetics of enzymatic reactions.
Further quantitative progress requires reliable tools for the structure-function correlation of enzymes. Our
advances in this direction have led to the development of effective multiscale methods for simulating enzyme
catalysis. At this stage it is important to exploit our advances and to progress simultaneously in the following
directions: (a) Quantifying computer-aided enzyme design by: (i) reproducing the observed catalytic effects of
key designer enzymes by the EVB and other multiscale approaches. (ii) Using our multiscale approaches in
enzyme design projects, including changing the action of promiscuous enzymes, improving available designer
enzymes and helping in the design of new enzymes. After exploring the predictive power of our approaches,
we will use them in collaboration with research groups that are involved in enzyme design experiments. (b)
Continuing to advance quantitative computational methods, including: (i) using our PD QM(ai)/MM in
evaluating the ab initio free energy surfaces of enzymatic reactions; (ii) using the PD approach to automatically
refine EVB surfaces for exploring long distance mutational effects and catalytic landscapes; and (iii)
Quantifying the relationship between folding and stability. (c) Exploring the catalytic effect of directed evolution
and determining its relationship to natural evolution. (d) Conducting studies of important classes of enzymatic
reactions. (e) The relations of our finding to medical problems (including drug resistance) will be explored.
A.2 Multiscale Modeling of the energetics and functions of complex biological systems: Proteins that
guide the transport of electrons, protons and ions underpin basic functions of living cells. For example, proton
pumps regulate the electrochemical gradient that drives the transport of molecules across membranes.
Similarly, ion channels play a vital role in neural signal transduction and other functions. Mutations that disrupt
the action of such systems are associated with many devastating diseases. Therefore these proteins present
major targets for therapeutic intervention and play a central role in drug discovery efforts. Despite recent
structural and biochemical progress in studies of proton pumps, ion channels and related systems, there are
many cases where a quantitative structure-function correlation is still missing. Thus, it is crucial to develop,
refine and apply quantitative structure-function correlations using computer simulation approaches. In the past
we have made a major progress in converting structures to functions in systems that involve proton transport
(PTR) and charge transport. This was done by developing microscopic and coarse grained (CG) approaches
including multiscale approaches that allow us to explore very long time processes. Our multiscale models has
placed us in a position where we can advance in the following directions: (a) Simulating the time evolution of
PTR in proteins using realistic yet practical methods, where we can quantify the action of key proton-
conducting systems and advance the following projects: (i) exploiting our initial progress and continue to
explore the gating mechanism of the redox-coupled cytochrome c oxidase (CcO), putting more effort on well-
defined channels where the activation barriers for PTR are known, including in ba3-type and related systems.
(ii) Exploiting our recent breakthrough in modeling the conversion of pH gradients across the FO-ATPase
system to a vectorial rotation and gaining a better understanding of the relevant proton paths. (iii) Exploring
voltage activated PTR in Hv1. (iv) Continuing in our study of the PTR in bacteriorhodopsin (bR). (v) Exploiting
our progress in realistic modeling of membrane potential to interpret the observed relationship between these
potentials and the paths of the PT steps in CcO. (b) Exploiting our recent advances in modeling voltage
activated ion channels to advance the following projects: (i) quantifying the interplay between the electrode
potential and the protein/membrane landscape in voltage activation processes, (ii) reproducing the gating
current and the subsequent ion current and selectivity. (iii) Validating our simulation methods. (c) Modeling the
action of transporters by our multiscale approaches. (iv) Considering the relations between our finding to
various diseases.
项目摘要
在过去的几十年里,对人类健康的分子基础的理解取得了进展,
太棒了然而,我们在结构信息的转换方面远远落后,
将蛋白质序列转化为相应的功能。这方面的进展可以大大推进,
多尺度计算机模拟,可以处理不同的系统,增加了复杂性。在这个
阶段,我们准备将这些方法应用于其理解与重要医学相关的系统,
问题,包括酶的设计,耐药性和质子和离子的转运机制的研究,
从而阐明了生命系统中催化控制、生物能量学和能量转换的基础。我们
建议的协调方向如下。
A.1酶对生化过程的控制:许多疾病可以通过开发药物来控制
阻止酶在重要生物途径中的作用。在结构和
生物化学研究尚未导致对酶反应的能量学的定量理解。
进一步的定量进展需要可靠的工具来研究酶的结构-功能相关性。我们
这方面的进展导致了模拟酶的有效多尺度方法的发展
催化作用在这个阶段,重要的是利用我们的进步,同时在以下方面取得进展
方向:(a)量化计算机辅助酶设计:(i)再现观察到的催化作用,
关键设计酶的EVB和其他多尺度方法。(ii)使用我们的多尺度方法,
酶设计项目,包括改变混杂酶的作用,提高可用的设计师,
帮助设计新的酶。在探索了我们方法的预测能力之后,
我们将与参与酶设计实验的研究小组合作使用它们。(B)
继续推进定量计算方法,包括:(i)使用我们的PD QM(ai)/MM,
评估从头算自由能表面的酶反应;(ii)使用PD方法自动
改进EVB表面以探索长距离突变效应和催化景观;以及(iii)
量化折叠和稳定性之间的关系。(c)探索定向进化的催化作用
并确定它与自然进化的关系。(d)对重要的酶类进行研究
反应. (e)我们的发现与医学问题(包括耐药性)的关系将被探讨。
A.2复杂生物系统的能量学和功能的多尺度建模:
引导电子、质子和离子的运输,支持活细胞的基本功能。例如,质子
泵调节驱动分子跨膜运输的电化学梯度。
同样,离子通道在神经信号转导和其他功能中起着至关重要的作用。突变会破坏
这些系统的作用与许多毁灭性疾病有关。因此,这些蛋白质
它是治疗干预的主要目标,并在药物发现工作中发挥核心作用。尽管最近
在质子泵、离子通道和相关系统的研究中,
许多情况下,定量结构-功能相关性仍然缺失。因此,至关重要的是,
使用计算机模拟方法改进和应用定量结构-功能相关性。过去
我们已经在涉及质子运输的系统中,在将结构转换为功能方面取得了重大进展
(PTR)和电荷传输。这是通过开发微观和粗粒度(CG)方法完成的
包括多尺度方法,使我们能够探索非常长的时间过程。我们的多尺度模型
使我们能够在以下方向取得进展:(a)模拟时间演变,
蛋白质中的PTR使用现实而实用的方法,在那里我们可以量化关键质子的作用,
(i)利用我们初步取得的进展,继续
探索氧化还原偶联的细胞色素c氧化酶(CcO)的门控机制,
·定义的通道,其中PTR的激活障碍是已知的,包括在ba 3型和相关系统中。
(ii)利用我们最近在模拟FO-ATPase中pH梯度转换方面的突破
系统的矢量旋转,并获得有关质子路径的更好的理解。(iii)探索
Hv 1中的电压激活PTR。(iv)继续我们对细菌视紫红质(bR)的PTR的研究。(v)利用
我们在膜电位的现实建模方面的进展,以解释这些之间的观察到的关系,
电位和CcO中PT步骤的路径。(b)利用我们在电压建模方面的最新进展
激活离子通道,以推进以下项目:(i)量化电极之间的相互作用
电位和电压激活过程中的蛋白质/膜景观,(ii)再现门控
电流以及随后的离子电流和选择性。(iii)验证我们的模拟方法。(c)建模
通过我们的多尺度方法来研究运输者的行为。(iv)考虑到我们的发现与
各种疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ARIEH WARSHEL其他文献
ARIEH WARSHEL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ARIEH WARSHEL', 18)}}的其他基金
Multiscale Simulations of Biological Systems and Processes
生物系统和过程的多尺度模拟
- 批准号:
10709506 - 财政年份:2017
- 资助金额:
$ 57.58万 - 项目类别:
Multiscale Simulations of Biological Systems and Processes
生物系统和过程的多尺度模拟
- 批准号:
9275185 - 财政年份:2017
- 资助金额:
$ 57.58万 - 项目类别:
Multiscale Simulations of Biological Systems and Processes
生物系统和过程的多尺度模拟
- 批准号:
10406537 - 财政年份:2017
- 资助金额:
$ 57.58万 - 项目类别:
Computer Simulation Studies of the Origin of DNA Polymerase Fidelity
DNA 聚合酶保真度起源的计算机模拟研究
- 批准号:
8591706 - 财政年份:2013
- 资助金额:
$ 57.58万 - 项目类别:
Computer Simulation Studies of the Origin of DNA Polymerase
DNA聚合酶起源的计算机模拟研究
- 批准号:
7464334 - 财政年份:2008
- 资助金额:
$ 57.58万 - 项目类别:
Computer Simulation Studies of the Origin of DNA
DNA起源的计算机模拟研究
- 批准号:
6990383 - 财政年份:2004
- 资助金额:
$ 57.58万 - 项目类别:
COMPUTER SIMULATION OF ELECTRON TRANSFER REACTIONS
电子转移反应的计算机模拟
- 批准号:
2022231 - 财政年份:1988
- 资助金额:
$ 57.58万 - 项目类别:
相似海外基金
Cerebral infarction treatment strategy using collagen-like "triple helix peptide" containing functional amino acid sequence
含功能氨基酸序列的类胶原“三螺旋肽”治疗脑梗塞策略
- 批准号:
23K06972 - 财政年份:2023
- 资助金额:
$ 57.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of a screening method for functional microproteins independent of amino acid sequence conservation
不依赖氨基酸序列保守性的功能性微生物蛋白筛选方法的建立
- 批准号:
23KJ0939 - 财政年份:2023
- 资助金额:
$ 57.58万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Effects of amino acid sequence and lipids on the structure and self-association of transmembrane helices
氨基酸序列和脂质对跨膜螺旋结构和自缔合的影响
- 批准号:
19K07013 - 财政年份:2019
- 资助金额:
$ 57.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction of electron-transfer amino acid sequence probe with an interaction for protein and cell
蛋白质与细胞相互作用的电子转移氨基酸序列探针的构建
- 批准号:
16K05820 - 财政年份:2016
- 资助金额:
$ 57.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of artificial antibody of anti-bitter taste receptor using random amino acid sequence library
利用随机氨基酸序列库开发抗苦味受体人工抗体
- 批准号:
16K08426 - 财政年份:2016
- 资助金额:
$ 57.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The aa15-17 amino acid sequence in the terminal protein domain of HBV polymerase as a viral factor affect-ing in vivo as well as in vitro replication activity of the virus.
HBV聚合酶末端蛋白结构域中的aa15-17氨基酸序列作为影响病毒体内和体外复制活性的病毒因子。
- 批准号:
25461010 - 财政年份:2013
- 资助金额:
$ 57.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Amino acid sequence analysis of fossil proteins using mass spectrometry
使用质谱法分析化石蛋白质的氨基酸序列
- 批准号:
23654177 - 财政年份:2011
- 资助金额:
$ 57.58万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Precise hybrid synthesis of glycoprotein through amino acid sequence-specific introduction of oligosaccharide followed by enzymatic transglycosylation reaction
通过氨基酸序列特异性引入寡糖,然后进行酶促糖基转移反应,精确杂合合成糖蛋白
- 批准号:
22550105 - 财政年份:2010
- 资助金额:
$ 57.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Estimating selection on amino-acid sequence polymorphisms in Drosophila
果蝇氨基酸序列多态性选择的估计
- 批准号:
NE/D00232X/1 - 财政年份:2006
- 资助金额:
$ 57.58万 - 项目类别:
Research Grant
Construction of a neural network for detecting novel domains from amino acid sequence information only
构建仅从氨基酸序列信息检测新结构域的神经网络
- 批准号:
16500189 - 财政年份:2004
- 资助金额:
$ 57.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)