Electrophysiological basis of sour taste transduction
酸味转导的电生理基础
基本信息
- 批准号:10407024
- 负责人:
- 金额:$ 49.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-04-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AcidsAction PotentialsAnimalsApplications GrantsBehaviorBehavioralBrain regionBrown FatCalciumCarbonatesCellsCircumvallate PapillaCitrus FruitCytosolDataDefectDetectionDevelopmentDiabetes MellitusDietDiseaseElectrophysiology (science)EpithelialExhibitsFamilyFire - disastersFoodFundingFungiform PapillaGene Expression ProfileGene FamilyGenesGoalsHumanHypertensionIn Situ HybridizationIntegral Membrane ProteinInvestigationIon ChannelIonsKnock-outKnockout MiceLaboratoriesMaintenanceMammalsMeasuresMediatingMembraneModelingMolecularMouse StrainsMusMutateNatureNerveObesityOperant ConditioningPalatePhysiologicalPhysiological ProcessesPlayPotassium ChannelPropertyProtein IsoformsProtonsReceptor CellReporterRoleSaltsSensorySignal TransductionSodium ChlorideStimulusSweetening AgentsSystemTaste BudsTaste PerceptionTestingTongueType III Epithelial Receptor CellXenopus oocytecell typecombatdefined contributiondietaryexperimental studygenetic testingimmunocytochemistryimprovedin vivolipid metabolismmembernovelpatch clamppromoterreceptorreceptor functionresponsescreeningsensortaste stimulitaste systemtaste transduction
项目摘要
Project Summary
The broad goal of the proposed experiments is to identify key molecules that allow mammals to detect basic
tastes and generate electrical responses that are conducted to brain regions. Molecular mechanisms of taste
reception have been a subject of intense investigation over the last 30 years, with great strides made in
identifying receptors for bitter, sweet and umami. Much less is known about the nature and function of receptors
for sour, the taste that allows us to detect acids in spoiled foods or citrus fruits. In this proposal, we will begin to
unravel this problem as we test the contribution of the newly discovered otopetrin proton channels in the
transduction of acidic and ionic tastes. These experiments build on the progress made in the last grant
application, where we used a combination of cellular, molecular and functional approaches to identify the pH
sensitive ion channels in Type III taste receptor cells (TRCs) that mediate sour taste. Notably, we described a
novel proton-selective ionic current that is likely to be a key component of sour taste transduction. In the last
funding period, we successfully identified the gene that encodes the proton channel, through functional screening
of genes enriched in Type III TRCs. Among 41 genes tested, we identified one, encoding the transmembrane
protein Otop1 that upon expression induced a proton current in both Xenopus oocytes and HEK-293 cells.
Interestingly, Otop1 was first identified as a gene mutated in mice with vestibular defects (“tilted” or tlt) but its
function in the vestibular system and elsewhere in the body was not understood. Building on these new results,
we propose three specific aims to test the role of the Otop channels in taste signaling. The first aim will examine
the functional distribution of Otop1 across the tongue and palate epithelium, allowing us to answer the question
of whether Otop1 is the sole ion channel mediating proton influx in the gustatory system. In the second aim, we
will measure cellular responses to acids in wildtype and Otop1 KO mice in order to determine the degree to
which Otop1 contributes to sensory responses, ex vivo. In the third aim, we will measure responses from
gustatory nerves and assess behavioral thresholds for acid detection in wildtype and Otop1 KO mice to
determine the extent to which Otop1 mediates responses to sour taste stimuli in vivo. Together our experiments
will allow us to determine if Otop1 functions as a sour taste receptor. Our efforts to identify mechanisms of taste
transduction may allow the development of taste modifiers that can be used to enhance palatability of food,
reducing the need to add sweeteners that contribute to the development of diabetes or salts that contribute to
hypertension. Moreover, the proposed experiments will provide basic information regarding the functional
properties of this new family of proton channels that will help us understand their contributions to diverse
physiological processes, including brown fat metabolism and the development and maintenance of the vestibular
system.
项目摘要
拟议实验的广泛目标是确定允许哺乳动物检测基本的关键分子。
味觉并产生传导到大脑区域的电反应。味觉的分子机制
在过去的30年里,接收一直是一个深入研究的主题,
识别苦味甜味和鲜味的感受器对受体的性质和功能知之甚少
酸,这种味道使我们能够在腐败的食物或柑橘类水果中发现酸。在本提案中,我们将开始
解开这个问题,因为我们测试的贡献,新发现的otopetrin质子通道在
酸性和离子味的传导。这些实验建立在上一次拨款所取得的进展之上
应用程序,其中我们使用细胞,分子和功能方法的组合来确定pH值
III型味觉受体细胞(TRCs)中的敏感离子通道,介导酸味。值得注意的是,我们描述了一个
新的质子选择性离子电流,可能是酸味转导的关键组成部分。在过去
在基金资助期间,我们成功地确定了编码质子通道的基因,通过功能筛选
富含III型TRCs的基因。在检测的41个基因中,我们确定了一个,编码跨膜
蛋白Otop 1,其在表达时在爪蟾卵母细胞和HEK-293细胞中诱导质子电流。
有趣的是,Otop 1最初被鉴定为前庭缺陷(“倾斜”或tlt)小鼠的基因突变,但其
前庭系统和身体其他部位的功能尚不清楚。在这些新成果的基础上,
我们提出了三个具体的目标,以测试在味觉信号的OTOP通道的作用。第一个目标是检查
Otop 1在舌和腭上皮中的功能分布,使我们能够回答这个问题
Otop 1是否是味觉系统中唯一介导质子流入的离子通道。在第二个目标中,我们
将测量野生型和Otop 1 KO小鼠对酸的细胞反应,以确定
Otop 1在体外对感觉反应有贡献。在第三个目标中,我们将测量
味觉神经和评估野生型和Otop 1 KO小鼠中酸检测的行为阈值,
确定Otop 1在体内介导对酸味刺激的反应的程度。我们的实验
将使我们能够确定Otop 1是否作为酸味受体发挥作用。我们对味觉机制的研究
转导可允许开发可用于增强食物的适口性的味道调节剂,
减少添加有助于糖尿病发展的甜味剂或有助于糖尿病的盐的需要,
高血压此外,所提出的实验将提供有关功能的基本信息,
这一新的质子通道家族的性质,这将有助于我们了解它们对不同生物学特性的贡献。
生理过程,包括棕色脂肪代谢和前庭的发育和维持
系统
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sue C. Kinnamon其他文献
A bitter-sweet beginning
苦乐参半的开端
- DOI:
10.1038/381737a0 - 发表时间:
1996-06-27 - 期刊:
- 影响因子:48.500
- 作者:
Sue C. Kinnamon - 通讯作者:
Sue C. Kinnamon
Sue C. Kinnamon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sue C. Kinnamon', 18)}}的其他基金
Illuminating the structure and function of Type I taste cells
阐明 I 型味觉细胞的结构和功能
- 批准号:
10292443 - 财政年份:2018
- 资助金额:
$ 49.7万 - 项目类别:
Illuminating the structure and function of Type I taste cells
阐明 I 型味觉细胞的结构和功能
- 批准号:
10049240 - 财政年份:2018
- 资助金额:
$ 49.7万 - 项目类别:
Illuminating the structure and function of Type I taste cells
阐明 I 型味觉细胞的结构和功能
- 批准号:
10518394 - 财政年份:2018
- 资助金额:
$ 49.7万 - 项目类别:
Electrophysiological basis of sour taste transduction
酸味转导的电生理基础
- 批准号:
10627899 - 财政年份:2014
- 资助金额:
$ 49.7万 - 项目类别:
Novel transgenic reporter/deleter allele for Type I taste cells
I 型味觉细胞的新型转基因报告基因/删除等位基因
- 批准号:
8302602 - 财政年份:2012
- 资助金额:
$ 49.7万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 49.7万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 49.7万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 49.7万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 49.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 49.7万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 49.7万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 49.7万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 49.7万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 49.7万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 49.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




