Deep learning and topological approaches to identify kidney tissue features associated with adverse outcomes after nephrectomy
深度学习和拓扑方法识别与肾切除术后不良后果相关的肾组织特征
基本信息
- 批准号:10229784
- 负责人:
- 金额:$ 23.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAlbuminuriaAlgorithmsArteriesAtrophicBlood VesselsCategoriesChronic Kidney FailureClassificationClinicalClinical DataCollectionComputer AssistedConsentConsumptionContralateralCreatinineDataData AnalysesDetectionDiabetes MellitusDiabetic NephropathyDiseaseDistantElderlyEtiologyEvaluationExcisionFibrosisFunctional disorderFutureGlomerulonephritisHeterogeneityHumanHypertensionImageImage AnalysisIndividualKidneyKidney DiseasesKidney FailureMalignant NeoplasmsManualsMasksMeasuresMethodsModernizationNeedle biopsy procedureNeedlesNephrectomyNephrotic SyndromeNeural Network SimulationObesityOperative Surgical ProceduresOrganOutcomePathologicPathologyPatientsPhenotypePopulationRenal functionReproducibilityResearchRiskRisk FactorsSamplingScanningSerumSpatial DistributionStructureTechniquesTestingTimeTissue imagingTissuesTrainingTubular formationVisualadverse outcomebaseclinically relevantcohortconvolutional neural networkcost effectivedeep learningexperienceglomerulosclerosishistological stainsimprovedinsightinterstitialkidney biopsykidney imagingmorphometrynoveloutcome predictionpreventprospectiverenal damageserial imagingspatial relationshiptumoruser-friendly
项目摘要
ABSTRACT
Pathologic assessment of kidney biopsy tissue remains the best predictor of adverse outcomes in patients with
kidney diseases. These features are largely independent of disease etiology and are not well reflected in non-
invasive tests (e.g. serum creatinine and albuminuria). Quantitative assessment of these parameters is time
consuming and maybe flawed by heterogeneity of pathologic features within kidney tissue. We propose to
evaluate and optimize computational image analysis approaches to support pathologic analysis of large pieces
of cancer-free kidney tissue from patients who underwent nephrectomy which we have collected (n > 220).
Computer-assisted analysis of glomerular phenotypes in these samples show that morphometric features in
glomeruli without obvious pathology precede established pathologic changes. We hypothesize that evaluation
of cancer-free kidney tissue will inform about subclinical damage in the remaining kidney which is associated
with relevant pathologic and clinical parameters. We propose to assess glomeruli, arteries and tubuli, and
determine the spatial inter-relationship of the assessed features within the kidney tissue.
The examination of significantly larger pieces of kidney tissue than those obtained by needle biopsy allows to
include 20 times more glomeruli (nephrectomy samples: avrg. 256 glomeruli/sample; needle biopsy: avrg.
13/sample) with the vast majority considered “normal appearing” as per standard pathologic criteria. In
addition, these samples include a significant larger number of blood vessels (nephrectomy samples: avrg. 18
arteries/sample; needle biopsy: avrg. 1/sample) allowing a more robust evaluation of the vasculature. We
propose to apply and optimize our detection and segmentation approach to detect glomeruli, arteries and
tubular segments to train convolutional neural networks and use topological image analysis to automate the
identification of visual and sub-visual features. In addition, we will assess the spatial relationship between
individual features (glomeruli, arteries and tubular segments and features of the same category, i.e. globally
sclerosed glomeruli, arteries with hyalinosis, atrophied tubuli) within the section. To determine reproducibility of
our approach, we will assess a second tissue section from a separate part of the same samples. Specifically,
we propose an algorithmic detection and characterization of kidney features using deep learning, a topological
image analysis for discovery of novel sub-visual features in kidney tissue images and to determine spatial
relatedness of these features.
If successful, we will validate our analytical approach in future independent studies. For this purpose, we are
already prospectively collecting kidney tissue and longitudinal clinical data from consented patients undergoing
nephrectomies, allowing association of specific features with clinical relevant outcomes.
摘要
肾活检组织的病理学评估仍然是肾移植患者不良结局的最佳预测因子。
肾脏疾病这些特征在很大程度上与疾病病因无关,并且在非疾病中没有很好地反映出来。
侵入性检查(如血清肌酐和白蛋白尿)。定量评估这些参数是时间
消耗并且可能由于肾组织内的病理特征的异质性而缺陷。我们建议
评估和优化计算机图像分析方法,以支持大块的病理分析
我们收集了220例接受肾切除术的患者的无癌肾组织。
对这些样本中肾小球表型的计算机辅助分析显示,
无明显病理改变的肾小球先于确定的病理改变。我们假设该评估
无癌肾组织的转移将告知剩余肾脏的亚临床损伤,
相关的病理和临床参数。我们建议评估肾小球、动脉和肾小管,
确定所述肾组织内所评估的特征的空间相互关系。
对比针吸活检获得的肾组织块明显更大的肾组织块的检查允许
包括20倍肾小球(肾切除术样品:AVRG. 256个肾小球/样本;针吸活检:avrg。
13/样品),根据标准病理学标准,绝大多数被认为是“表现正常”。在
此外,这些样品包括大量的血管(肾切除样品:AVRG,18
动脉/样本;针吸活组织检查:平均值。1/样品),从而能够更稳健地评价血管系统。我们
我建议应用和优化我们的检测和分割方法来检测肾小球,动脉和
管状段来训练卷积神经网络,并使用拓扑图像分析来自动化
识别视觉和亚视觉特征。此外,我们还将评估
单个特征(肾小球、动脉和肾小管段以及相同类别的特征,即全局
硬化的肾小球、玻璃样变性的动脉、萎缩的小管)。为了确定重现性,
在我们的方法中,我们将评估来自相同样本的单独部分的第二个组织切片。具体地说,
我们提出了一种使用深度学习的肾脏特征的算法检测和表征,
用于发现肾组织图像中新亚视觉特征并确定空间
这些特征的相关性。
如果成功,我们将在未来的独立研究中验证我们的分析方法。为此,我们
已经前瞻性地收集了来自同意接受治疗的患者的肾组织和纵向临床数据,
肾切除术,允许将特定特征与临床相关结果相关联。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Markus Bitzer其他文献
Markus Bitzer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Markus Bitzer', 18)}}的其他基金
Deep learning and topological approaches to identify kidney tissue features associated with adverse outcomes after nephrectomy
深度学习和拓扑方法识别与肾切除术后不良后果相关的肾组织特征
- 批准号:
10441377 - 财政年份:2021
- 资助金额:
$ 23.4万 - 项目类别:
相似海外基金
Albuminuria and vascular risk in females with chronic kidney disease
女性慢性肾病患者的蛋白尿和血管风险
- 批准号:
481013 - 财政年份:2023
- 资助金额:
$ 23.4万 - 项目类别:
Molecular mechanisms of heparanase-2 (hpa-2) in endothelial cell activation, inflammation and albuminuria
乙酰肝素酶 2 (hpa-2) 在内皮细胞活化、炎症和蛋白尿中的分子机制
- 批准号:
389250244 - 财政年份:2017
- 资助金额:
$ 23.4万 - 项目类别:
Research Grants
Albuminuria and incident chronic lung disease exacerbations in five population-based cohorts
五个基于人群的队列中的蛋白尿和慢性肺病恶化事件
- 批准号:
9144859 - 财政年份:2015
- 资助金额:
$ 23.4万 - 项目类别:
The association between changes in albuminuria and all-cause mortality in patients with type 2 diabetes in the Action in Diabetes and Vascular disease: preterAx and diamicroN-MR Controlled Evaluation (ADVANCE) Study
糖尿病和血管疾病行动:preterAx 和 diamicroN-MR 对照评估 (ADVANCE) 研究中白蛋白尿变化与 2 型糖尿病患者全因死亡率之间的关联
- 批准号:
324375 - 财政年份:2015
- 资助金额:
$ 23.4万 - 项目类别:
Albuminuria and incident chronic lung disease exacerbations in five population-based cohorts
五个基于人群的队列中的蛋白尿和慢性肺病恶化事件
- 批准号:
8997288 - 财政年份:2015
- 资助金额:
$ 23.4万 - 项目类别:
The Role of Nontraditional Glycemic Markers in Diabetes and Albuminuria
非传统血糖标志物在糖尿病和蛋白尿中的作用
- 批准号:
9028606 - 财政年份:2013
- 资助金额:
$ 23.4万 - 项目类别:
The Role of Nontraditional Glycemic Markers in Diabetes and Albuminuria
非传统血糖标志物在糖尿病和蛋白尿中的作用
- 批准号:
8508005 - 财政年份:2013
- 资助金额:
$ 23.4万 - 项目类别:
Investigation of pathogenesis of albuminuria in chronic kidney disease and its association with cardiovascular complications
慢性肾脏病白蛋白尿发病机制及其与心血管并发症的关系研究
- 批准号:
23591209 - 财政年份:2011
- 资助金额:
$ 23.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The association of sub-clinical atherosclerosis and estimated glomelular filtration rate with albuminuria among general Japanese.
日本普通人群亚临床动脉粥样硬化和估计肾小球滤过率与蛋白尿的关联。
- 批准号:
23590791 - 财政年份:2011
- 资助金额:
$ 23.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of mechanism of albuminuria/proteinuria in diabetes in terms of sugar chain
从糖链角度分析糖尿病白蛋白尿/蛋白尿机制
- 批准号:
22790788 - 财政年份:2010
- 资助金额:
$ 23.4万 - 项目类别:
Grant-in-Aid for Young Scientists (B)