Deep learning and topological approaches to identify kidney tissue features associated with adverse outcomes after nephrectomy
深度学习和拓扑方法识别与肾切除术后不良后果相关的肾组织特征
基本信息
- 批准号:10229784
- 负责人:
- 金额:$ 23.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAlbuminuriaAlgorithmsArteriesAtrophicBlood VesselsCategoriesChronic Kidney FailureClassificationClinicalClinical DataCollectionComputer AssistedConsentConsumptionContralateralCreatinineDataData AnalysesDetectionDiabetes MellitusDiabetic NephropathyDiseaseDistantElderlyEtiologyEvaluationExcisionFibrosisFunctional disorderFutureGlomerulonephritisHeterogeneityHumanHypertensionImageImage AnalysisIndividualKidneyKidney DiseasesKidney FailureMalignant NeoplasmsManualsMasksMeasuresMethodsModernizationNeedle biopsy procedureNeedlesNephrectomyNephrotic SyndromeNeural Network SimulationObesityOperative Surgical ProceduresOrganOutcomePathologicPathologyPatientsPhenotypePopulationRenal functionReproducibilityResearchRiskRisk FactorsSamplingScanningSerumSpatial DistributionStructureTechniquesTestingTimeTissue imagingTissuesTrainingTubular formationVisualadverse outcomebaseclinically relevantcohortconvolutional neural networkcost effectivedeep learningexperienceglomerulosclerosishistological stainsimprovedinsightinterstitialkidney biopsykidney imagingmorphometrynoveloutcome predictionpreventprospectiverenal damageserial imagingspatial relationshiptumoruser-friendly
项目摘要
ABSTRACT
Pathologic assessment of kidney biopsy tissue remains the best predictor of adverse outcomes in patients with
kidney diseases. These features are largely independent of disease etiology and are not well reflected in non-
invasive tests (e.g. serum creatinine and albuminuria). Quantitative assessment of these parameters is time
consuming and maybe flawed by heterogeneity of pathologic features within kidney tissue. We propose to
evaluate and optimize computational image analysis approaches to support pathologic analysis of large pieces
of cancer-free kidney tissue from patients who underwent nephrectomy which we have collected (n > 220).
Computer-assisted analysis of glomerular phenotypes in these samples show that morphometric features in
glomeruli without obvious pathology precede established pathologic changes. We hypothesize that evaluation
of cancer-free kidney tissue will inform about subclinical damage in the remaining kidney which is associated
with relevant pathologic and clinical parameters. We propose to assess glomeruli, arteries and tubuli, and
determine the spatial inter-relationship of the assessed features within the kidney tissue.
The examination of significantly larger pieces of kidney tissue than those obtained by needle biopsy allows to
include 20 times more glomeruli (nephrectomy samples: avrg. 256 glomeruli/sample; needle biopsy: avrg.
13/sample) with the vast majority considered “normal appearing” as per standard pathologic criteria. In
addition, these samples include a significant larger number of blood vessels (nephrectomy samples: avrg. 18
arteries/sample; needle biopsy: avrg. 1/sample) allowing a more robust evaluation of the vasculature. We
propose to apply and optimize our detection and segmentation approach to detect glomeruli, arteries and
tubular segments to train convolutional neural networks and use topological image analysis to automate the
identification of visual and sub-visual features. In addition, we will assess the spatial relationship between
individual features (glomeruli, arteries and tubular segments and features of the same category, i.e. globally
sclerosed glomeruli, arteries with hyalinosis, atrophied tubuli) within the section. To determine reproducibility of
our approach, we will assess a second tissue section from a separate part of the same samples. Specifically,
we propose an algorithmic detection and characterization of kidney features using deep learning, a topological
image analysis for discovery of novel sub-visual features in kidney tissue images and to determine spatial
relatedness of these features.
If successful, we will validate our analytical approach in future independent studies. For this purpose, we are
already prospectively collecting kidney tissue and longitudinal clinical data from consented patients undergoing
nephrectomies, allowing association of specific features with clinical relevant outcomes.
抽象的
肾脏活检组织的病理评估仍然是患者患者不良预后的最佳预测指标
肾脏疾病。这些特征在很大程度上与疾病的病因无关,并且在非 -
侵入性测试(例如血清肌酐和蛋白尿)。这些参数的定量评估是时间
肾脏组织中病理特征的异质性消耗,也许有缺陷。我们建议
评估和优化计算图像分析方法以支持大块的病理分析
来自我们已收集的肾切除术的患者的无癌肾组织(n> 220)。
这些样品中肾小球表型的计算机辅助分析表明,形态特征
没有明显病理的肾小球先于已建立的病理变化。我们假设该评估
无癌的肾脏组织将告知其余肾脏的亚临床损伤,这与
具有相关的病理和临床参数。我们建议评估肾小球,动脉和小节,以及
确定肾脏组织中评估特征的空间相互关系。
比针活检获得的肾脏组织的显着更大的肾脏组织允许
包括20倍的肾小球(肾切除术样品:AVRG。256glomerulli/样品;针头活检:AVRG。
根据标准病理标准,绝大多数被视为“正常外观”的13/样品)。在
成瘾,这些样本包括大量的血管(肾切除术样本:AVRG。18
动脉/样品;针头活检:AVRG。 1/样品)允许对脉管系统进行更强大的评估。我们
提议应用和优化我们的检测和分割方法检测肾小球,动脉和
结节段训练卷积神经网络并使用拓扑图像分析来自动化
识别视觉和次视感特征。此外,我们将评估
单个特征(肾小球,动脉和管状段以及同一类别的特征,即全球
在该部分内有巩膜的肾小球,透明膜病的动脉,萎缩性的tubuli)。确定可重复性
我们的方法,我们将从同一样品的单独部分评估第二个组织部分。具体来说,
我们提出了使用深度学习(拓扑结构)对肾脏特征的算法检测和表征
图像分析,用于发现肾脏组织图像中新型亚视觉特征的发现并确定空间
这些功能的相关性。
如果成功,我们将在未来的独立研究中验证我们的分析方法。为此,我们是
已经前瞻性地收集了接受同意患者的肾脏组织和纵向临床数据
肾切除术,允许将特定特征与临床相关结果相关联。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Markus Bitzer其他文献
Markus Bitzer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Markus Bitzer', 18)}}的其他基金
Deep learning and topological approaches to identify kidney tissue features associated with adverse outcomes after nephrectomy
深度学习和拓扑方法识别与肾切除术后不良后果相关的肾组织特征
- 批准号:
10441377 - 财政年份:2021
- 资助金额:
$ 23.4万 - 项目类别:
相似国自然基金
B细胞刺激因子通路激活介导足细胞损伤产生蛋白尿的机制研究
- 批准号:82300795
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
阵发性睡眠性血红蛋白尿症异常克隆扩增的分子机制及干预研究
- 批准号:82370121
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
AT1-AA-FOXO3-S100A13信号通路调控足细胞衰老促进子痫前期蛋白尿形成的机制研究
- 批准号:82370718
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
糖肾方通过上调乳酸脱氢酶LDHB促进足细胞乳酸能量代谢减少DKD蛋白尿的机制研究
- 批准号:82374224
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
METTL14调控Rab7线粒体定位在蛋白尿损伤肾小管上皮细胞中的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A novel electroceutical tool for treatment of kidney-based diseases
一种治疗肾脏疾病的新型电疗法工具
- 批准号:
10455432 - 财政年份:2021
- 资助金额:
$ 23.4万 - 项目类别:
Using Machine Learning for Early Recognition and Personalized Treatment of Acute Kidney Injury
使用机器学习对急性肾损伤进行早期识别和个性化治疗
- 批准号:
10461848 - 财政年份:2021
- 资助金额:
$ 23.4万 - 项目类别:
Using Machine Learning for Early Recognition and Personalized Treatment of Acute Kidney Injury
使用机器学习对急性肾损伤进行早期识别和个性化治疗
- 批准号:
10683199 - 财政年份:2021
- 资助金额:
$ 23.4万 - 项目类别:
Comparative Effectiveness and Safety of Newer and Older Antihyperglycemic Medications
新旧抗高血糖药物的有效性和安全性比较
- 批准号:
10334530 - 财政年份:2021
- 资助金额:
$ 23.4万 - 项目类别:
A novel electroceutical tool for treatment of kidney-based diseases
一种治疗肾脏疾病的新型电疗法工具
- 批准号:
10194764 - 财政年份:2021
- 资助金额:
$ 23.4万 - 项目类别: