A novel electroceutical tool for treatment of kidney-based diseases
一种治疗肾脏疾病的新型电疗法工具
基本信息
- 批准号:10455432
- 负责人:
- 金额:$ 23.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAction PotentialsAcuteAlbuminuriaAlgorithmsAnimal ModelAntihypertensive AgentsAttenuatedCD8-Positive T-LymphocytesCardiometabolic DiseaseCathetersChronicChronic DiseaseChronic Kidney FailureClinical ResearchClinical TrialsCollagenComputer ModelsContractsDOCADenervationDepositionDevelopmentDevicesDiseaseElectrodesEnd stage renal failureEngineeringExcretory functionFDA approvedFeedbackFibrosisGlomerular Filtration RateGlomerulonephritisHypertensionInflammationInflammatoryKidneyKidney DiseasesKnowledgeLaboratoriesLeadLinkLiverMacrophage ActivationManufacturer NameMeasuresMediatingMedicalModelingMorbidity - disease rateMusNerveNerve BlockOperative Surgical ProceduresOrganPancreasPathogenesisPathologicPathologyPatientsPeripheral Nerve StimulationPhysiologicalPre-Clinical ModelProcessRattusRenal Blood FlowRenal functionReninRenin-Angiotensin-Aldosterone SystemReportingResearchRodent ModelRoleSheepSodiumSodium ChlorideSpleenStimulusSystemTechnologyTestingTranslatingUnited StatesVascular resistanceWaterbasecomparative efficacycytokinedesignexperienceexperimental studyglomerular filtrationhypertension treatmenthypertensivein silicoin vivointerstitialkidney vascular structuremortalityneuroregulationneurotechnologynovelpre-clinicalpreclinical studypressurepreventrelating to nervous systemrenal arteryresponsesuccesstherapeutic targettool
项目摘要
ABSTRACT
Chronic overactivity of renal nerves results in physiological and pathological changes in renal function that
contribute to kidney-based diseases. Hypertension is correlated with increased activity of sympathetic nerves to
the kidneys in preclinical models, and in most of these models, hypertension is attenuated by renal denervation
(RDN). Clinical trials building on these models have demonstrated that catheter-based RDN is effective in
lowering arterial pressure in hypertensive patients. The success of catheter-based RDN to treat hypertension
has catalyzed the emerging field of electroceuticals, which is based on the concept of organ-specific
neuromodulation (rather than ablation) for cardiometabolic diseases. Whereas ablation is non-reversible and
non-tritratable, neuromodulation can be incorporated into a closed-loop feedback design to precisely regulate
the activity of nerves as desired. Moreover, neuromodulation can be turned off and restarted as needed.
Combined, our laboratories have extensive knowledge on the role of renal nerves in the pathogenesis of
hypertension and the mechansims mediating the anti-hypertensive effect of RDN in rodent models (Co-PI
Osborn) as well as experience in developing computational modeling tools to design neurotechnologies (Co-PI
Johnson. We aim to translate this knowledge to the development of a novel implantable technology for
neuromodulation of the kidney for treatment of neurally-mediated renal pathology in a translational large animal
model of renal pathology (DOCA-salt sheep). In Specific Aim 1, we will develop a bidirectional renal nerve cuff
interface, first in silico and then in the lab, to electrically block (E-Block) and sense (E-Sense) renal nerve activity
in sheep. In Specific Aim 2, we will optimize stimulus parameters of renal E-block in vivo by comparing the acute
renal responses to E-Block to those observed following surgical ablation in anesthetized DOCA-hypertensive
sheep. Successful development of this neuromodulatory tool for treatment of renal disease can be translated to
treat other chronic diseases associated with overactivity of renal nerves including chronic kidney disease and
end-stage renal failure. Moreover, this same technology can potentially be used to modulate other organs (e.g.
liver, pancreas, spleen) for the treatment of chronic cardiometabolic diseases that are linked to excessive nerve
activity.
抽象的
肾神经的慢性过度活动导致肾功能的生理和病理变化
促进肾脏基疾病。高血压与交感神经的活动增加相关
临床前模型中的肾脏,在大多数这些模型中,高血压会因肾脏神经支配而减弱
(RDN)。基于这些模型的临床试验表明,基于导管的RDN有效
降低高血压患者的动脉压。基于导管的RDN治疗高血压的成功
已经催化了电气的新兴领域,该领域基于器官特异性的概念
心脏代谢疾病的神经调节(而不是消融)。而消融是不可逆的,
不可创新的神经调节可以纳入闭环反馈设计中,以精确调节
根据需要的神经活性。此外,可以根据需要关闭神经调节并重新启动。
合并,我们的实验室对肾神经在发病机理中的作用有广泛的了解
高血压和机甲介导RDN在啮齿动物模型中的抗高血压作用(Co-Pi)
Osborn)以及开发设计神经技术的计算建模工具的经验(Co-Pi
约翰逊。我们旨在将这些知识转化为开发新颖的植入技术
肾脏的神经调节用于治疗转化大动物中神经介导的肾脏病理
肾脏病理模型(Doca-Salt绵羊)。在特定目标1中,我们将开发双向肾神经袖口
界面,首先在计算机中,然后在实验室中,以电气阻塞(E块)和感官(E-Sense)肾神经活动
在羊中。在特定的目标2中,我们将通过比较急性在体内优化肾脏E块的刺激参数
在麻醉的doca-型 - - 高质量中,对E块对E块的肾脏反应
羊。成功开发了这种用于治疗肾脏疾病的神经调节工具
治疗与肾神经过度活动有关的其他慢性疾病,包括慢性肾脏疾病和
末期肾衰竭。此外,这项相同的技术可以可能用于调节其他器官(例如
肝脏,胰腺,脾脏)用于治疗与过度神经有关的慢性心脏代谢疾病
活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Douglas Johnson其他文献
Matthew Douglas Johnson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Douglas Johnson', 18)}}的其他基金
Training Program in Translational Neuromodulation
转化神经调节培训计划
- 批准号:
10412589 - 财政年份:2022
- 资助金额:
$ 23.13万 - 项目类别:
Training Program in Translational Neuromodulation
转化神经调节培训计划
- 批准号:
10659148 - 财政年份:2022
- 资助金额:
$ 23.13万 - 项目类别:
Optimizing pallidofugal modulation of midbrain and thalamic nuclei for treating cognitive-motor signs of Parkinson's disease
优化中脑和丘脑核的苍白球调节以治疗帕金森病的认知运动体征
- 批准号:
10282964 - 财政年份:2021
- 资助金额:
$ 23.13万 - 项目类别:
A novel electroceutical tool for treatment of kidney-based diseases
一种治疗肾脏疾病的新型电疗法工具
- 批准号:
10194764 - 财政年份:2021
- 资助金额:
$ 23.13万 - 项目类别:
Optimizing pallidofugal modulation of midbrain and thalamic nuclei for treating cognitive-motor signs of Parkinson's disease
优化中脑和丘脑核的苍白球调节以治疗帕金森病的认知运动体征
- 批准号:
10489838 - 财政年份:2021
- 资助金额:
$ 23.13万 - 项目类别:
Optimizing pallidofugal modulation of midbrain and thalamic nuclei for treating cognitive-motor signs of Parkinson's disease
优化中脑和丘脑核的苍白球调节以治疗帕金森病的认知运动体征
- 批准号:
10703249 - 财政年份:2021
- 资助金额:
$ 23.13万 - 项目类别:
Spatiotemporal Optimization of Deep Brain Stimulation for Parkinson's Disease
帕金森病脑深部刺激的时空优化
- 批准号:
10680463 - 财政年份:2016
- 资助金额:
$ 23.13万 - 项目类别:
Spatiotemporal optimization of deep brain stimulation for Parkinson's Disease
帕金森病脑深部刺激的时空优化
- 批准号:
9278298 - 财政年份:2016
- 资助金额:
$ 23.13万 - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:12202147
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
相似海外基金
Linking rare primate ganglion cells to downstream visual functions
将稀有灵长类神经节细胞与下游视觉功能联系起来
- 批准号:
10721221 - 财政年份:2023
- 资助金额:
$ 23.13万 - 项目类别:
Electrical Mapping Signatures of Adverse Structural and Functional Remodeling in Ventricular Arrhythmia
室性心律失常不良结构和功能重塑的电图特征
- 批准号:
10571137 - 财政年份:2023
- 资助金额:
$ 23.13万 - 项目类别:
Genes and Nutrition: Dietary Choline, the Gut Microbiota, and Atrial Fibrillation
基因与营养:膳食胆碱、肠道微生物群和心房颤动
- 批准号:
10646383 - 财政年份:2022
- 资助金额:
$ 23.13万 - 项目类别:
A Versatile Chemical-Genetic Approach to Determine Bases for Arrhythmogenesis and Sodium Channelopathies
确定心律失常发生和钠离子通道病基础的多功能化学遗传学方法
- 批准号:
10608370 - 财政年份:2022
- 资助金额:
$ 23.13万 - 项目类别: