A novel electroceutical tool for treatment of kidney-based diseases
一种治疗肾脏疾病的新型电疗法工具
基本信息
- 批准号:10455432
- 负责人:
- 金额:$ 23.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAction PotentialsAcuteAlbuminuriaAlgorithmsAnimal ModelAntihypertensive AgentsAttenuatedCD8-Positive T-LymphocytesCardiometabolic DiseaseCathetersChronicChronic DiseaseChronic Kidney FailureClinical ResearchClinical TrialsCollagenComputer ModelsContractsDOCADenervationDepositionDevelopmentDevicesDiseaseElectrodesEnd stage renal failureEngineeringExcretory functionFDA approvedFeedbackFibrosisGlomerular Filtration RateGlomerulonephritisHypertensionInflammationInflammatoryKidneyKidney DiseasesKnowledgeLaboratoriesLeadLinkLiverMacrophage ActivationManufacturer NameMeasuresMediatingMedicalModelingMorbidity - disease rateMusNerveNerve BlockOperative Surgical ProceduresOrganPancreasPathogenesisPathologicPathologyPatientsPeripheral Nerve StimulationPhysiologicalPre-Clinical ModelProcessRattusRenal Blood FlowRenal functionReninRenin-Angiotensin-Aldosterone SystemReportingResearchRodent ModelRoleSheepSodiumSodium ChlorideSpleenStimulusSystemTechnologyTestingTranslatingUnited StatesVascular resistanceWaterbasecomparative efficacycytokinedesignexperienceexperimental studyglomerular filtrationhypertension treatmenthypertensivein silicoin vivointerstitialkidney vascular structuremortalityneuroregulationneurotechnologynovelpre-clinicalpreclinical studypressurepreventrelating to nervous systemrenal arteryresponsesuccesstherapeutic targettool
项目摘要
ABSTRACT
Chronic overactivity of renal nerves results in physiological and pathological changes in renal function that
contribute to kidney-based diseases. Hypertension is correlated with increased activity of sympathetic nerves to
the kidneys in preclinical models, and in most of these models, hypertension is attenuated by renal denervation
(RDN). Clinical trials building on these models have demonstrated that catheter-based RDN is effective in
lowering arterial pressure in hypertensive patients. The success of catheter-based RDN to treat hypertension
has catalyzed the emerging field of electroceuticals, which is based on the concept of organ-specific
neuromodulation (rather than ablation) for cardiometabolic diseases. Whereas ablation is non-reversible and
non-tritratable, neuromodulation can be incorporated into a closed-loop feedback design to precisely regulate
the activity of nerves as desired. Moreover, neuromodulation can be turned off and restarted as needed.
Combined, our laboratories have extensive knowledge on the role of renal nerves in the pathogenesis of
hypertension and the mechansims mediating the anti-hypertensive effect of RDN in rodent models (Co-PI
Osborn) as well as experience in developing computational modeling tools to design neurotechnologies (Co-PI
Johnson. We aim to translate this knowledge to the development of a novel implantable technology for
neuromodulation of the kidney for treatment of neurally-mediated renal pathology in a translational large animal
model of renal pathology (DOCA-salt sheep). In Specific Aim 1, we will develop a bidirectional renal nerve cuff
interface, first in silico and then in the lab, to electrically block (E-Block) and sense (E-Sense) renal nerve activity
in sheep. In Specific Aim 2, we will optimize stimulus parameters of renal E-block in vivo by comparing the acute
renal responses to E-Block to those observed following surgical ablation in anesthetized DOCA-hypertensive
sheep. Successful development of this neuromodulatory tool for treatment of renal disease can be translated to
treat other chronic diseases associated with overactivity of renal nerves including chronic kidney disease and
end-stage renal failure. Moreover, this same technology can potentially be used to modulate other organs (e.g.
liver, pancreas, spleen) for the treatment of chronic cardiometabolic diseases that are linked to excessive nerve
activity.
摘要
肾神经的慢性过度活动导致肾功能的生理和病理变化,
会导致肾脏疾病高血压与交感神经活动增加有关,
在临床前模型中的肾脏,并且在大多数这些模型中,高血压通过肾脏去神经支配而减弱
(RDN)。基于这些模型的临床试验已经证明,基于导管的RDN在以下方面是有效的:
降低高血压患者的动脉压。导管引导的RDN治疗高血压的成功
催化了基于器官特异性概念的新兴电化学领域
神经调节(而不是消融)用于心脏代谢疾病。而消融是不可逆的,
不可研磨的神经调节可以被并入闭环反馈设计中以精确地调节
神经活动如所愿。此外,神经调节可以根据需要关闭和重新启动。
结合起来,我们的实验室对肾神经在肾脏疾病发病机制中的作用有着广泛的了解。
高血压和介导RDN的抗高血压作用的机制(Co-PI
奥斯本)以及开发计算建模工具以设计神经技术的经验(Co-PI
约翰逊。我们的目标是将这些知识转化为一种新型植入式技术的发展,
用于治疗平移大型动物中神经介导的肾脏病理的肾脏神经调节
肾脏病理学模型(DOCA-盐绵羊)。在特定目标1中,我们将开发双向肾神经袖带
接口,首先在计算机中,然后在实验室中,以电阻断(E-Block)和感知(E-Sense)肾神经活动
在羊身上。在具体目标2中,我们将通过比较急性E-block的刺激参数,
麻醉DOCA高血压患者手术消融后对E-Block的肾反应
羊这种用于治疗肾脏疾病的神经调节工具的成功开发可以转化为
治疗与肾神经过度活动相关的其他慢性疾病,包括慢性肾病,
终末期肾衰竭此外,这种相同的技术可以潜在地用于调节其他器官(例如,
肝、胰腺、脾)用于治疗与过度神经紧张相关的慢性心脏代谢疾病
活动
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Douglas Johnson其他文献
Matthew Douglas Johnson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Douglas Johnson', 18)}}的其他基金
Training Program in Translational Neuromodulation
转化神经调节培训计划
- 批准号:
10412589 - 财政年份:2022
- 资助金额:
$ 23.13万 - 项目类别:
Training Program in Translational Neuromodulation
转化神经调节培训计划
- 批准号:
10659148 - 财政年份:2022
- 资助金额:
$ 23.13万 - 项目类别:
Optimizing pallidofugal modulation of midbrain and thalamic nuclei for treating cognitive-motor signs of Parkinson's disease
优化中脑和丘脑核的苍白球调节以治疗帕金森病的认知运动体征
- 批准号:
10282964 - 财政年份:2021
- 资助金额:
$ 23.13万 - 项目类别:
A novel electroceutical tool for treatment of kidney-based diseases
一种治疗肾脏疾病的新型电疗法工具
- 批准号:
10194764 - 财政年份:2021
- 资助金额:
$ 23.13万 - 项目类别:
Optimizing pallidofugal modulation of midbrain and thalamic nuclei for treating cognitive-motor signs of Parkinson's disease
优化中脑和丘脑核的苍白球调节以治疗帕金森病的认知运动体征
- 批准号:
10489838 - 财政年份:2021
- 资助金额:
$ 23.13万 - 项目类别:
Optimizing pallidofugal modulation of midbrain and thalamic nuclei for treating cognitive-motor signs of Parkinson's disease
优化中脑和丘脑核的苍白球调节以治疗帕金森病的认知运动体征
- 批准号:
10703249 - 财政年份:2021
- 资助金额:
$ 23.13万 - 项目类别:
Spatiotemporal Optimization of Deep Brain Stimulation for Parkinson's Disease
帕金森病脑深部刺激的时空优化
- 批准号:
10680463 - 财政年份:2016
- 资助金额:
$ 23.13万 - 项目类别:
Spatiotemporal optimization of deep brain stimulation for Parkinson's Disease
帕金森病脑深部刺激的时空优化
- 批准号:
9278298 - 财政年份:2016
- 资助金额:
$ 23.13万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 23.13万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 23.13万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 23.13万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 23.13万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 23.13万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 23.13万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 23.13万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 23.13万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 23.13万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 23.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)