Statistical Methods for Personal Genome Interpretation
个人基因组解读的统计方法
基本信息
- 批准号:10229521
- 负责人:
- 金额:$ 19.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectBiochemistryBiometryBiophysicsBipolar DisorderClassificationClinicalCommunitiesComplementComplexComputational BiologyDataData SetDatabasesDependenceDiseaseDisease modelDisease susceptibilityFutureGene ExpressionGenesGeneticGenetic MarkersGenetic VariationGenomeGenomicsGenotypeGoalsHeart failureIndividualInsulin ResistanceMeasurementMeasuresMentorsMethodsModelingOutcomePatternPersonal Genetic InformationPlayPopulationPositioning AttributePrincipal InvestigatorPublic HealthResearch PersonnelRiskRoleStatistical MethodsStructureTrainingUniversitiesVariantbasecareerclinical applicationclinically relevantdisease heterogeneitydisorder riskgene expression variationgenetic informationgenetic predictorsgenetic testinggenetic variantgenome sequencinggenome wide association studygenome-wideimprovednovelpersonalized medicinerare variantresponserisk prediction modelstatisticstooltraittranscriptomevariant of unknown significancewhole genome
项目摘要
PROJECT SUMMARY
The objective of this proposal is to improve clinical interpretation of genetic variation in personal genomes by
developing statistical methods to predict the downstream effects of personal genetic variation on
transcriptome-wide gene expression levels and on risks for complex diseases and other clinically relevant
traits. This proposal is based on the hypothesis that personal transcriptome variation plays an important role in
determining complex traits and disease susceptibilities, and that transcriptome variation has a genetic
component that is predictable from personal genetic variation. The specific aims address three aspects of the
relationship between genetic variation, transcriptome variation, and complex traits. In particular, Aim 1 is to
develop methods to predict the effects of individual genetic variants on the expression levels of individual
genes; Aim 2 is to develop methods to predict transcriptome-wide gene expression levels from whole genome
sequencing data, including both rare and common variant effects; and Aim 3 is to develop methods to
incorporate information on gene expression variation into genotype-based disease risk prediction models,
without requiring gene expression levels to be measured during application of the models to predict risk in
future individuals. Completion of these aims will provide novel tools for clinicians and researchers to interpret
personal genomes, by predicting regulatory effects of individual variants of unknown significance and global
effects of whole-genome variation on transcriptome variation and risks for complex diseases and other
clinically relevant traits. In addition, this project will enable the Principal Investigator to develop expertise in
statistics to complement her current background in genetics, biophysics, biochemistry, and computational
biology. Combined with additional statistical training at Stanford University through coursework, seminars, one-
on-one advising from the project co-mentors, and interactions with the wider statistics and biostatistics
communities, this project will prepare the Principal Investigator to launch an independent academic career in
statistical genomics.
项目总结
这项建议的目标是通过以下方式改善对个人基因组遗传变异的临床解释
发展统计方法来预测个人遗传变异的下游影响
转录组范围的基因表达水平以及复杂疾病和其他临床相关疾病的风险
特征。这一建议是基于这样一种假设,即个人转录组变异在
决定复杂的性状和疾病易感性,以及转录组变异具有遗传
可以从个人遗传变异中预测到的成分。具体目标涉及以下三个方面
遗传变异、转录组变异和复杂性状之间的关系。具体而言,目标1是
发展预测个体遗传变异对个体表达水平影响的方法
基因;目标2是开发从全基因组预测转录组范围基因表达水平的方法
测序数据,包括罕见和常见的变异效应;目标3是开发方法来
将基因表达变异信息纳入基于基因的疾病风险预测模型,
不需要在模型应用期间测量基因表达水平来预测风险
未来的个体。这些目标的完成将为临床医生和研究人员提供新的工具来解释
个人基因组,通过预测未知意义和全球范围的个体变异的调控效应
全基因组变异对转录组变异和复杂疾病等风险的影响
临床上相关的特征。此外,该项目将使首席调查员能够在以下方面发展专门知识
统计学,以补充她目前在遗传学、生物物理学、生物化学和计算方面的背景
生物学。结合斯坦福大学通过课程作业、研讨会进行的额外统计培训,一
来自项目共同导师的一对一建议,以及与更广泛的统计和生物统计的互动
社区,该项目将使首席调查员在#年开始独立的学术生涯。
统计基因组学。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Characterizing uncertainty in predictions of genomic sequence-to-activity models.
描述基因组序列到活性模型预测的不确定性。
- DOI:10.1101/2023.12.21.572730
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Bajwa,Ayesha;Rastogi,Ruchir;Kathail,Pooja;Shuai,RichardW;Ioannidis,NilahM
- 通讯作者:Ioannidis,NilahM
Personal transcriptome variation is poorly explained by current genomic deep learning models.
- DOI:10.1038/s41588-023-01574-w
- 发表时间:2023-12
- 期刊:
- 影响因子:30.8
- 作者:Huang, Connie;Shuai, Richard W.;Baokar, Parth;Chung, Ryan;Rastogi, Ruchir;Kathail, Pooja;Ioannidis, Nilah M.
- 通讯作者:Ioannidis, Nilah M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nilah Monnier Ioannidis其他文献
Nilah Monnier Ioannidis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nilah Monnier Ioannidis', 18)}}的其他基金
Statistical Methods for Personal Genome Interpretation
个人基因组解读的统计方法
- 批准号:
10018525 - 财政年份:2019
- 资助金额:
$ 19.03万 - 项目类别:
Statistical Methods for Personal Genome Interpretation
个人基因组解读的统计方法
- 批准号:
10001717 - 财政年份:2019
- 资助金额:
$ 19.03万 - 项目类别:
Inferring the effects of genetic variants on gene expression and splicing
推断遗传变异对基因表达和剪接的影响
- 批准号:
8835598 - 财政年份:2014
- 资助金额:
$ 19.03万 - 项目类别:
Inferring the effects of genetic variants on gene expression and splicing
推断遗传变异对基因表达和剪接的影响
- 批准号:
9039466 - 财政年份:2014
- 资助金额:
$ 19.03万 - 项目类别:
Inferring the effects of genetic variants on gene expression and splicing
推断遗传变异对基因表达和剪接的影响
- 批准号:
9174089 - 财政年份:2014
- 资助金额:
$ 19.03万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 19.03万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 19.03万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 19.03万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 19.03万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 19.03万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 19.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 19.03万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 19.03万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 19.03万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 19.03万 - 项目类别:
Grant-in-Aid for Early-Career Scientists