1/2: B-SNIP: Algorithmic Diagnostics for Efficient Prescription of Treatments (ADEPT)
1/2:B-SNIP:高效治疗处方的算法诊断 (ADEPT)
基本信息
- 批准号:10298707
- 负责人:
- 金额:$ 30.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AgeAlgorithmsBacterial Artificial ChromosomesBiologicalBiological MarkersBipolar DisorderChicagoClassificationClinicalClinical DataClinical TreatmentClozapineCognitionCognitiveCollaborationsComplexDataDatabasesDiagnosisDiagnosticDimensionsDiscriminationDiseaseElectrophysiology (science)EnvironmentEtiologyEvaluationHylobates GenusIndividualInterventionInterviewInvestigationLaboratoriesMeasuresMedicalMedicineModelingModificationNatureNeurobiologyOutcomePatientsPhenotypeProbabilityProceduresPsychosesResourcesSaccadesSamplingSchizoaffective DisordersSchizophreniaSensorySignal TransductionStandardizationStimulusSyndromeTestingTimeTranslationsUniversitiesWorkanalytical toolbasecase-basedclinical Diagnosisclinical applicationcognitive testingimprovedindividualized medicinelaboratory equipmentnovelpatient subsetsphenomenological modelspreservationrelating to nervous systemresearch clinical testingresponsetherapy developmentvalidation studies
项目摘要
Clinical phenomenology alone neither (i) captures biologically based disease entities, nor (ii) allows for
individualized treatment prescriptions based on neurobiology. The B-SNIP consortium showed and replicated
that schizophrenia, schizoaffective, and bipolar disorder with psychosis lack neurobiological distinctiveness. B-
SNIP transitioned to subgrouping psychosis cases based on biomarker homology. We produced and replicated
biologically homologous psychosis Biotypes (BT1, BT2, BT3) that may assist treatment targeting for psychosis.
This twelve-month project will develop a time and resource efficient algorithm for deriving B-SNIP Biotypes that
can be implemented in even under-resourced environments. Like in laboratory medicine, the procedure
(ADEPT) will be stepwise (clinical evaluation, then cognition, then electrophysiology) to yield Biotypes for
which specific treatments can be either implemented (established interventions) or evaluated (novel treatment
development). Aim 1: B-SNIP Biotypes currently require specialized equipment for laboratory testing, and
multiple tests with statistical integration across multiple scores. Instead, we will determine the best individual
measures that yield the most efficient and highest probability Biotype memberships. ADEPT will be adaptive
both within (clinical, cognitive, electrophysiological) and across the domains (clinical features inform selection
of cognitive tests which inform selection of electrophysiological tests). At each stage, ADEPT will produce a
Biotype classification and confidence. This will allow for Biotype determination in a proportion of cases even
when laboratory testing resources are limited. Aim 2: The first contact in medical evaluation involves clinical
characterization. Clinical features alone will yield Biotype discriminations sufficient for treatment targeting in a
small but significant subset of patients (»15%, mostly BT3). Aim 3: Cognition tests are the least technically
demanding laboratory assessments, and are powerful discriminators of Biotypes. B-SNIP uses BACS, Stop
Signal (SST), and antisaccades to assess cognition. Addition of cognition to clinical features will yield »80%
accuracy for identifying BT3s and »40% of all cases (mostly BT2, although BT1 and BT2 are difficulty to
differentiate without electrophysiology). Patients will receive different cognitive tests based on the adaptive
algorithm (e.g., SST may be superior for Biotype determination in some cases). The adaptive approach
preserves classification precision while reducing clinician and patient burden. Aim 4: The most important
Biotype differentiating electrophysiology features are low neural response to salient stimuli (BT1) and
exuberant nonspecific neural activity (BT2). We used multiple complex electrophysiology measures, but we will
identify tests and measures that yield the most efficient Biotype differentiation. Addition of electrophysiology to
clinical and cognition information will yield 90-95% accuracy for identifying Biotypes for all cases. Again, for a
given patient, we will adaptively select the specific electrophysiological measures to maximize classification
accuracy for that patient (e.g., P300 may be superior for Biotype determination in some cases).
单独的临床现象学既不能(i)捕获基于生物学的疾病实体,也不能(ii)考虑
基于神经生物学的个体化治疗处方。 B-SNIP 联盟展示并复制了
精神分裂症、情感分裂和双相情感障碍伴精神病缺乏神经生物学特征。 B-
SNIP 转变为根据生物标志物同源性对精神病病例进行亚组。我们制作并复制
生物学同源精神病生物型(BT1、BT2、BT3)可能有助于针对精神病的治疗。
这个为期 12 个月的项目将开发一种时间和资源高效的算法,用于派生 B-SNIP 生物型,
即使在资源贫乏的环境中也可以实施。就像实验室医学一样,该过程
(ADEPT)将逐步(临床评估,然后认知,然后电生理学)产生生物型
哪些具体治疗可以实施(既定干预措施)或评估(新治疗
发展)。目标 1:B-SNIP Biotypes 目前需要专用设备进行实验室测试,并且
多个测试,对多个分数进行统计整合。相反,我们将确定最佳个人
产生最有效和最高概率的生物型成员资格的措施。 ADEPT 将具有适应性
无论是在领域内(临床、认知、电生理学)还是跨领域(临床特征告知选择)
认知测试为电生理测试的选择提供信息)。在每个阶段,ADEPT 都会产生一个
生物型分类和置信度。这将允许在一定比例的病例中进行生物型测定,甚至
当实验室检测资源有限时。目标2:医学评估首先接触的是临床
表征。仅凭临床特征就足以产生生物型区分,以用于治疗目标
一小部分但重要的患者子集(»15%,主要是 BT3)。目标 3:认知测试技术含量最低
要求严格的实验室评估,并且是生物型的有力区分者。 B-SNIP 使用 BACS,停止
信号 (SST) 和反眼跳用于评估认知。将认知与临床特征相结合将产生 »80%
识别 BT3 的准确性和所有案例的 40%(主要是 BT2,尽管 BT1 和 BT2 很难识别)
无需电生理学即可区分)。患者将根据适应性接受不同的认知测试
算法(例如,在某些情况下,SST 可能更适合生物型确定)。适应性方法
保持分类精度,同时减轻临床医生和患者的负担。目标4:最重要
生物型区分电生理学特征是对显着刺激(BT1)的低神经反应和
旺盛的非特异性神经活动(BT2)。我们使用了多种复杂的电生理学措施,但我们会
确定产生最有效的生物型分化的测试和措施。添加电生理学
临床和认知信息将产生 90-95% 的准确度来识别所有病例的生物型。再次,对于一个
对于给定的患者,我们将自适应地选择特定的电生理测量以最大化分类
该患者的准确性(例如,在某些情况下,P300 可能更适合生物型测定)。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Psychosis and fever revisited.
- DOI:10.1016/j.schres.2021.11.025
- 发表时间:2022-04
- 期刊:
- 影响因子:4.5
- 作者:Clementz BA
- 通讯作者:Clementz BA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BRETT A CLEMENTZ其他文献
BRETT A CLEMENTZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BRETT A CLEMENTZ', 18)}}的其他基金
Identification of distributed neural sources of the auditory steady-state response in psychosis Biotypes
精神病生物型中听觉稳态反应的分布式神经源的识别
- 批准号:
10543156 - 财政年份:2022
- 资助金额:
$ 30.2万 - 项目类别:
5/5 - Biomarkers/Biotypes, Course of Early Psychosis and Specialty Services (BICEPS)
5/5 - 生物标志物/生物型、早期精神病课程和专业服务 (BICEPS)
- 批准号:
10683289 - 财政年份:2022
- 资助金额:
$ 30.2万 - 项目类别:
Identification of distributed neural sources of the auditory steady-state response in psychosis Biotypes
精神病生物型中听觉稳态反应的分布式神经源的识别
- 批准号:
10373165 - 财政年份:2022
- 资助金额:
$ 30.2万 - 项目类别:
5/5: Selective Antipsychotic Response to Clozapine in B-SNIP Biotype-1 (CLOZAPINE)
5/5:B-SNIP Biotype-1 (CLOZAPINE) 中氯氮平的选择性抗精神病反应
- 批准号:
10613498 - 财政年份:2021
- 资助金额:
$ 30.2万 - 项目类别:
5/5: Selective Antipsychotic Response to Clozapine in B-SNIP Biotype-1 (CLOZAPINE)
5/5:B-SNIP Biotype-1 (CLOZAPINE) 中氯氮平的选择性抗精神病反应
- 批准号:
10397394 - 财政年份:2021
- 资助金额:
$ 30.2万 - 项目类别:
5/5 BIPOLAR-SCHIZOPHRENIA NETWORK FOR INTERMEDIATE PHENOTYPES (B-SNIP) - Resubmission - 1
5/5 中间表型的双极精神分裂症网络 (B-SNIP) - 重新提交 - 1
- 批准号:
9338010 - 财政年份:2015
- 资助金额:
$ 30.2万 - 项目类别:
4/4-Psychosis and Affective Research Domains and Intermediate Phenotypes (PARDIP)
4/4-精神病和情感研究领域和中间表型(PARDIP)
- 批准号:
8902951 - 财政年份:2013
- 资助金额:
$ 30.2万 - 项目类别:
4/4-Psychosis and Affective Research Domains and Intermediate Phenotypes (PARDIP)
4/4-精神病和情感研究领域和中间表型(PARDIP)
- 批准号:
8706963 - 财政年份:2013
- 资助金额:
$ 30.2万 - 项目类别:
4/4-Psychosis and Affective Research Domains and Intermediate Phenotypes (PARDIP)
4/4-精神病和情感研究领域和中间表型(PARDIP)
- 批准号:
8504490 - 财政年份:2013
- 资助金额:
$ 30.2万 - 项目类别:
Neural Noise and Cognitive Control in Schizophrenia
精神分裂症的神经噪声和认知控制
- 批准号:
8607212 - 财政年份:2011
- 资助金额:
$ 30.2万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 30.2万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 30.2万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 30.2万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 30.2万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 30.2万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 30.2万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 30.2万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 30.2万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 30.2万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 30.2万 - 项目类别:
Continuing Grant














{{item.name}}会员




