Transparent graphene electrode arrays for simultaneous electrical and optical investigation of computations in the olfactory bulb
透明石墨烯电极阵列用于同时进行嗅球计算的电学和光学研究
基本信息
- 批准号:10415793
- 负责人:
- 金额:$ 3.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAfferent NeuronsAnimalsAreaBehaviorBiomimeticsBrainCalciumCalcium SignalingCellsChronicCommunitiesCustomDevicesDorsalElectrodesElectrophysiology (science)EnvironmentFluorescenceFractalsFutureGeometryHealth BenefitImageImplantIn VitroInterneuronsInvestigationLinkLocationLogicMapsMeasuresMethodsNatureNeuronsNeurosciencesNoiseObstructionOdorsOlfactory CortexOlfactory PathwaysOpticsOutputPatternPopulationProcessPropertyPublic HealthReportingResearchSignal TransductionStructureSurfaceSynapsesTechniquesTechnologyTimeValidationVisualWorkawakebiomaterial compatibilitybrain machine interfacecell typedensitydesignexperimental studyflexibilitygranule cellgrapheneimprovedin vivoinsightinterestmetallicitynervous system disorderneural circuitneural prosthesisneuronal circuitrynovelnovel strategiesolfactory bulbolfactory sensory neuronsoptogeneticspreservationrelating to nervous systemresponsesensorsensory inputtemporal measurementtooltwo-photon
项目摘要
Project Summary and Abstract
A major obstacle to understanding the link between behavior and neuronal activity is the difficulty of
electrophysiologically recording the activity of large neuronal populations without limiting visual access. Electrode
arrays directly measure electrical signals and offer significantly greater temporal resolution than optical
fluorescence techniques, but the resulting obstruction of optical access limits the ability to pair electrode arrays
with optogenetic stimulation and calcium imaging. In order to better pair these tools, a new approach to the
neuron-electrode interface is required. We propose to fabricate a high-density array of active graphene
devices on a transparent flexible substrate for in vivo applications. This novel design will address critical
barriers to progress in the field of in vivo neural recording technology: improved signal strength, high temporal
resolution, high sensor density, and improved biocompatibility with the unique aspect of transparency.
In the first aim, we will develop a surface graphene electrode array (GEA). Critically, the ease of
fabrication will allow us to iterate through slight alterations to the GEA design, such as electrode geometry and
the flexibility of the support layer through fractal cuts to optimize its ability to mimic the environment. This
biomimetic design will result in higher sensitivity through more intimate contact with cells of interest while
minimizing damage for long term recordings. The local signal amplification resulting from the field effect response
of graphene will make result in a device with an unprecedented level of biocompatibility and sensitivity. This
transparent GEA will first be applied to record the activity of the sensory input to the olfactory bulb, located in
glomeruli at the surface of the brain. To validate this array, we will image this sensory input in concert with GEA
recording. This will allow us to determine whether the GEA can faithfully recover the spatial pattern of OB
glomerular responses. We will then implement this array to map the transfer function between the sensory neuron
inputs and the output neurons of the OB.
In the second aim, we will insert the GEA deep into the brain and record from granule cells, a population
of small interneurons located deep in the brain, which form reciprocal synapses with the output neurons of OB.
While recording electrically from granule cells, we will image calcium signals in the output neurons. Comparison
of these recordings will elucidate the computations that these neurons perform. Together, these experiments will
reveal how information is transformed as it moves between different cell types within a neural circuit. In addition,
this work will establish GEAs as a powerful tool for investigating neural circuits.
项目摘要及摘要
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Movement-Related Signals in Sensory Areas: Roles in Natural Behavior.
- DOI:10.1016/j.tins.2020.05.005
- 发表时间:2020-08
- 期刊:
- 影响因子:15.9
- 作者:Parker PRL;Brown MA;Smear MC;Niell CM
- 通讯作者:Niell CM
Sniff-synchronized, gradient-guided olfactory search by freely moving mice.
- DOI:10.7554/elife.58523
- 发表时间:2021-05-04
- 期刊:
- 影响因子:7.7
- 作者:Findley TM;Wyrick DG;Cramer JL;Brown MA;Holcomb B;Attey R;Yeh D;Monasevitch E;Nouboussi N;Cullen I;Songco JO;King JF;Ahmadian Y;Smear MC
- 通讯作者:Smear MC
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Morgan A Brown其他文献
Morgan A Brown的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
How Spinal Afferent Neurons Control Appetite and Thirst
脊髓传入神经元如何控制食欲和口渴
- 批准号:
DP220100070 - 财政年份:2023
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Projects
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
$ 3.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10477437 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10315571 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10680037 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10654779 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10275133 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10470747 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2018
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2017
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




