Chemical approaches toward the identification, functional analysis, and biosynthesis of small molecule cyclomodulins
小分子环调节蛋白的鉴定、功能分析和生物合成的化学方法
基本信息
- 批准号:10296659
- 负责人:
- 金额:$ 57.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-12-11 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAnabolismAnimalsApoptosisAzoxymethaneBacteriaBacterial ToxinsBiological AssayBiomimeticsCarbamatesCell CycleCell Cycle ProgressionChemicalsChemistryColitisColorectal CancerComplexCrystallographyCyclizationCytotoxinDNADNA AlkylationDNA DamageDNA Double Strand BreakDataDiseaseEmbryoEmploymentEnzymatic BiochemistryEnzymesEpidemiologyEscherichia coliEukaryotic CellEuropeEvaluationExposure toFelis catusGastrointestinal DiseasesGene ClusterGeneticGoalsGrantHumanIminesIn VitroLightLiteratureMammalian CellMediatingMethodsModelingMolecularMusNatural ProductsNucleotidesOrphanPathway interactionsPeptide HydrolasesPhenocopyPhenotypePhysiologyPre-Clinical ModelProbioticsProdrugsProductionProteinsPyridonesReactionResearchResearch PersonnelResistanceRoleRouteSideSignal TransductionStructureTestingTinWorkX-Ray CrystallographyZebrafishcarcinogenesischemical synthesiscyclopropanecytotoxicdeacylationfeedinggenotoxicityin vivoinsightmicrobiotanovel therapeutic interventionoxazolidineoxidationpreclinical studyresponseskeletalsmall moleculesymbionttissue culturetreatment responsetumortumorigenesistumorigenic
项目摘要
PROJECT SUMMARY/ABSTRACT.
Bacteria on and within the body (the microbiota) influence human physiology, therapeutic responses, and disease states. Cyclomodulins are bacterial toxins and effectors that modulate eukaryotic cell cycle progression,
proliferation, differentiation, or apoptosis, and may be genotoxic. Certain strains of E. coli in the human gut
contain a gene cluster (referred to as “clb”) that encodes small molecule cyclomodulins known as precolibactins. Evidence suggests precolibactins are prodrugs that are converted to cytotoxins (colibactins) by a dedicated peptidase (colibactin peptidase, ClbP). clb+ E. coli induce DNA double-strand breaks in mammalian cells
in vitro and in vivo, suggesting these molecules are trafficked (by an unknown mechanism) to eukaryotic cells,
and initiate tumor formation in colitis-susceptible mice treated with azoxymethane. Several independent studies have demonstrated that the clb cluster is epidemiologically correlated with colorectal cancer in humans. As
colibactins are unstable, all isolation efforts have employed clbP deletion strains to facilitate accumulation of
the more stable precolibactins. We developed convergent high-yielding syntheses of linear precolibactin biosynthetic precursors and showed they transform to unsaturated imines after ClbP deacylation; these imines
alkylate DNA by nucleotide addition to an electrophilic cyclopropane. Structure–function studies established
distinct DNA recognition and prodrug domains. Of equal significance, our data indicate that the use of clbP
deletion strains results in the production of alternative, non-genotoxic structures, such as precolibactins A–C.
Precolibactin-886 is the most complex clb isolate known and is the first that contains an α-aminomalonate residue, which is believed to be important for cytopathic effects. We hypothesize that the unusual macrocyclic
structure of precolibactin-886 also derives from employment of a clbP deletion strain. To test this we will prepare precolibactin-886 and key synthetic derivatives/biosynthetic precursors and elucidate their chemistry. We
will determine if deacylation of the linear precursor to precolibactin-886 leads to production of similar electrophilic imines. We will evaluate the potency, cell cycle effects, and DNA-damaging abilities of synthetic colibactins and controls in a zebrafish model. Using enzymology, genetic deletion studies, and X-ray crystallography,
we will elucidate the roles of the enzymes ClbL, ClbO, ClbM and ClbS, which are encoded in the clb cluster but
do not have well-defined functional roles. The latter two enzymes phenotypically contribute to colibactin resistance and their study may illuminate methods to inhibit clb+ E. coli-associated colorectal cancer. This grant
employs four investigators with non-overlapping expertise in chemical synthesis, natural products biosynthesis
and isolation, preclinical studies of clb+ E. coli in vitro and in vivo, and enzymology and protein crystallography.
This work will establish a mechanistic model that accounts for all known precolibactins, define the molecular
mechanisms by which certain E. coli induce carcinogenesis, and inform strategies to inhibit clb+ E. coli-driven
tumorigenesis. These studies will provide insights into the functional roles of non-proteiogenic cyclomodulins.
项目总结/抽象。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven D Bruner其他文献
Unmasking morphine
揭开吗啡的面纱
- DOI:
10.1038/nchembio.334 - 发表时间:
2010-04-01 - 期刊:
- 影响因子:13.700
- 作者:
Eric J Dimise;Steven D Bruner - 通讯作者:
Steven D Bruner
Steven D Bruner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven D Bruner', 18)}}的其他基金
Chemical approaches toward the identification, functional analysis, and biosynthesis of small molecule cyclomodulins
小分子环调节蛋白的鉴定、功能分析和生物合成的化学方法
- 批准号:
9447400 - 财政年份:2017
- 资助金额:
$ 57.34万 - 项目类别:
Chemical approaches toward the identification, functional analysis, and biosynthesis of small molecule cyclomodulins
小分子环调节蛋白的鉴定、功能分析和生物合成的化学方法
- 批准号:
10053323 - 财政年份:2017
- 资助金额:
$ 57.34万 - 项目类别:
Mechanisms of nonribosomal peptide natural product biosynthesis
非核糖体肽天然产物生物合成机制
- 批准号:
8066571 - 财政年份:2009
- 资助金额:
$ 57.34万 - 项目类别:
Mechanisms of nonribosomal peptide natural product biosynthesis
非核糖体肽天然产物生物合成机制
- 批准号:
8235051 - 财政年份:2009
- 资助金额:
$ 57.34万 - 项目类别:
Mechanisms of nonribosomal peptide natural product biosynthesis
非核糖体肽天然产物生物合成机制
- 批准号:
8446437 - 财政年份:2009
- 资助金额:
$ 57.34万 - 项目类别:
Mechanisms of nonribosomal peptide natural product biosynthesis
非核糖体肽天然产物生物合成机制
- 批准号:
7802060 - 财政年份:2009
- 资助金额:
$ 57.34万 - 项目类别:
Mechanisms of nonribosomal peptide natural product biosynthesis
非核糖体肽天然产物生物合成机制
- 批准号:
8076302 - 财政年份:2009
- 资助金额:
$ 57.34万 - 项目类别:
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 57.34万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 57.34万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 57.34万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 57.34万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 57.34万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 57.34万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 57.34万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 57.34万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 57.34万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 57.34万 - 项目类别:
Discovery Early Career Researcher Award














{{item.name}}会员




