Glycolysis and Glutaminase in CD8 T cell differentiation and anti-tumor immunity

CD8 T 细胞分化和抗肿瘤免疫中的糖酵解和谷氨酰胺酶

基本信息

  • 批准号:
    10305643
  • 负责人:
  • 金额:
    $ 5.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Summary Immunotherapy has transformed cancer treatment and improved clinical outcomes, but it does not cure most patients. Treatments such as anti-PD1 monoclonal antibodies and chimeric antigen receptor (CAR) T cells function by boosting the activity of cancer-specific interferon gamma-producing Th1 CD4 T cells and cytotoxic CD8 T cells (CTL). Increased effector function, however, must be balanced with the ability of anti- cancer T cells to persist long-term. A key goal of immunotherapy is to enhance effector function while maintaining T cell longevity and memory. It is now clear from work in the Rathmell lab that effector T cells utilize high rates of glycolysis while memory cells utilize mitochondrial pathways. Here I propose to test cell metabolism as a means to enhance both effector and memory T cell populations in immunotherapy. T cells radically alter their metabolism upon activation and increase glycolysis and glutamine oxidation (glutaminolysis) to support differentiation, effector function, and eventual generation of long-term memory that depend on mitochondria. Modulation of T cell glutamine metabolism may augment the efficacy of immunotherapy by enhancing both T cell effector function or memory capacity. The Rathmell Lab has shown that the metabolic program aerobic glycolysis is essential for effector T cell (Teff) function in inflammation and in tumors. Glutaminolysis complements glycolysis to fuel T cells by converting glutamine to the tricarboxylic acid cycle intermediate alpha-ketoglutarate (aKG). Using a conditional knockout of the glutaminolysis enzyme Glutaminase (GLS), which converts glutamine to glutamate, and an inhibitor of GLS that is currently in clinical trials as an anti-cancer agent, we have found that inhibition of GLS leads to a compensatory increase in glycolysis that enhances Th1 and CTL Teff function and differentiation. In addition to increasing effector function, however, I found that GLS inhibition also increases expression of inhibitory receptors, and chronic GLS deficiency ultimately suppresses T cells. In contrast, transient GLS inhibition enhanced Teff function while also priming mitochondrial metabolism for a memory-like differentiation, and led to improved T cell persistence in vivo. In this proposal, I will test the hypothesis that transient GLS inhibition can augment Teff function and maintain T cell survival and memory to boost anti-cancer immunotherapy efficacy, whereas chronic GLS inhibition will drive compensatory glycolysis, terminal Teff differentiation, and exhaustion. I will: (1) Test how transient versus chronic GLS inhibition affects CTL fate by determining differences in memory T cell formation, assessing the contribution of compensatory glycolysis to Teff phenotypes, and establishing the mitochondrial consequences of GLS inhibition; and (2) Test the effect of GLS inhibition on the immunotherapy efficacy of CD19-targeted CAR T cells and anti-PD1 treatment. These studies will demonstrate a new approach to improve anti-cancer immunotherapy and highlight a strategy of using GLS inhibition to modulate T cell metabolism and differentiation.
概括 免疫疗法改变了癌症治疗并改善了临床结果,但它并不能治愈大多数癌症 患者。抗 PD1 单克隆抗体和嵌合抗原受体 (CAR) T 细胞等治疗 通过增强癌症特异性干扰素 γ 产生 Th1 CD4 T 细胞的活性来发挥作用 细胞毒性 CD8 T 细胞 (CTL)。然而,效应器功能的增加必须与抗效应能力相平衡。 癌症T细胞能够长期存在。免疫疗法的一个关键目标是增强效应功能,同时 维持 T 细胞的寿命和记忆力。 Rathmell 实验室的工作现在清楚地表明,效应 T 细胞 利用高速率的糖酵解,而记忆细胞则利用线粒体途径。这里我建议测试cell 代谢作为增强免疫治疗中效应 T 细胞和记忆 T 细胞群的一种手段。 T细胞 激活后从根本上改变其代谢并增加糖酵解和谷氨酰胺氧化 (谷氨酰胺分解)支持分化、效应器功能和长期记忆的最终生成 依赖于线粒体。 T 细胞谷氨酰胺代谢的调节可能会增强 通过增强 T 细胞效应功能或记忆能力的免疫疗法。 Rathmell 实验室已经证明 代谢程序有氧糖酵解对于炎症和炎症中效应 T 细胞 (Teff) 的功能至关重要 在肿瘤中。谷氨酰胺分解通过将谷氨酰胺转化为三羧酸来补充糖酵解,为 T 细胞提供燃料 酸循环中间体α-酮戊二酸(aKG)。使用谷氨酰胺分解酶的条件敲除 谷氨酰胺酶(GLS),可将谷氨酰胺转化为谷氨酸,以及目前处于临床阶段的 GLS 抑制剂 作为抗癌剂的试验中,我们发现抑制 GLS 会导致代偿性增加 糖酵解增强 Th1 和 CTL Teff 功能和分化。除了增加效应器 然而,我发现 GLS 抑制也会增加抑制性受体的表达,并且慢性 GLS 缺陷最终会抑制 T 细胞。相反,短暂的 GLS 抑制增强了 Teff 功能,同时 还启动线粒体代谢以实现类似记忆的分化,并提高 T 细胞的持久性 体内。在这个提案中,我将测试短暂的 GLS 抑制可以增强 Teff 功能的假设,并且 维持 T 细胞存活和记忆以提高抗癌免疫治疗效果,而慢性 GLS 抑制将驱动代偿性糖酵解、终末 Teff 分化和衰竭。我将:(1)测试如何 短暂与慢性 GLS 抑制通过确定记忆 T 细胞形成的差异来影响 CTL 命运, 评估代偿性糖酵解对 Teff 表型的贡献,并建立线粒体 GLS 抑制的后果; (2)测试GLS抑制对免疫治疗效果的影响 CD19 靶向 CAR T 细胞和抗 PD1 治疗。这些研究将展示一种新方法 改进抗癌免疫治疗并强调利用 GLS 抑制调节 T 细胞的策略 代谢和分化。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Complex Integration of T-cell Metabolism and Immunotherapy.
  • DOI:
    10.1158/2159-8290.cd-20-0569
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    28.2
  • 作者:
    Madden MZ;Rathmell JC
  • 通讯作者:
    Rathmell JC
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Zachary Madden其他文献

Matthew Zachary Madden的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Zachary Madden', 18)}}的其他基金

Glycolysis and Glutaminase in CD8 T cell differentiation and anti-tumor immunity
CD8 T 细胞分化和抗肿瘤免疫中的糖酵解和谷氨酰胺酶
  • 批准号:
    9908440
  • 财政年份:
    2020
  • 资助金额:
    $ 5.18万
  • 项目类别:

相似海外基金

Delays in Acquisition of Oral Antineoplastic Agents
口服抗肿瘤药物的获取延迟
  • 批准号:
    9975367
  • 财政年份:
    2020
  • 资助金额:
    $ 5.18万
  • 项目类别:
Eliminate the difficulty of venous puncture in patients receiving antineoplastic agents - Development of a new strategy for the prevention of induration-
消除接受抗肿瘤药物的患者静脉穿刺的困难 - 制定预防硬结的新策略 -
  • 批准号:
    16K11932
  • 财政年份:
    2016
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular mechanisms of the antineoplastic agents inhibiting DNA replication and their applications to cancer patient treatmen
抗肿瘤药物抑制DNA复制的分子机制及其在癌症患者治疗中的应用
  • 批准号:
    19591274
  • 财政年份:
    2007
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
PNET EXPERIMENTAL THERAPEUTICS--ANTINEOPLASTIC AGENTS AND TREATMENT DELIVERY
PNET 实验治疗——抗肿瘤药物和治疗实施
  • 批准号:
    6346309
  • 财政年份:
    2000
  • 资助金额:
    $ 5.18万
  • 项目类别:
TRAINING IN PHARMACOLOGY OF ANTINEOPLASTIC AGENTS
抗肿瘤药物药理学培训
  • 批准号:
    2720213
  • 财政年份:
    1999
  • 资助金额:
    $ 5.18万
  • 项目类别:
TRAINING IN PHARMACOLOGY OF ANTINEOPLASTIC AGENTS
抗肿瘤药物药理学培训
  • 批准号:
    6513197
  • 财政年份:
    1999
  • 资助金额:
    $ 5.18万
  • 项目类别:
Training in Pharmacology of Antineoplastic Agents
抗肿瘤药物药理学培训
  • 批准号:
    7101017
  • 财政年份:
    1999
  • 资助金额:
    $ 5.18万
  • 项目类别:
Training in Pharmacology of Antineoplastic Agents
抗肿瘤药物药理学培训
  • 批准号:
    6894842
  • 财政年份:
    1999
  • 资助金额:
    $ 5.18万
  • 项目类别:
TYROSINE KINASE INHIBITORS AS ANTINEOPLASTIC AGENTS
酪氨酸激酶抑制剂作为抗肿瘤剂
  • 批准号:
    2885074
  • 财政年份:
    1999
  • 资助金额:
    $ 5.18万
  • 项目类别:
TYROSINE KINASE INHIBITORS AS ANTINEOPLASTIC AGENTS
酪氨酸激酶抑制剂作为抗肿瘤剂
  • 批准号:
    6174221
  • 财政年份:
    1999
  • 资助金额:
    $ 5.18万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了