Glycolysis and Glutaminase in CD8 T cell differentiation and anti-tumor immunity
CD8 T 细胞分化和抗肿瘤免疫中的糖酵解和谷氨酰胺酶
基本信息
- 批准号:10305643
- 负责人:
- 金额:$ 5.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAntineoplastic AgentsB-Cell Acute Lymphoblastic LeukemiaCD19 geneCD4 Positive T LymphocytesCD8-Positive T-LymphocytesCD8B1 geneCell Differentiation processCell SurvivalCell physiologyCellsCellular Metabolic ProcessChronicCitric Acid CycleClinicalClinical TrialsComplementDataDoseEnzymesEpigenetic ProcessEragrostisExcisionFailureGenerationsGlucoseGlutamatesGlutaminaseGlutamineGlycolysisGlycolysis InhibitionGoalsHousekeepingImmunotherapyImpairmentInflammationInflammatoryInterferon Type IIKnock-outLeadLongevityMaintenanceMalignant NeoplasmsMeasuresMemoryMetabolicMetabolismMitochondriaModalityModelingMusOncologyOutcomeOxidative PhosphorylationPathway interactionsPatientsPhenotypePlayPopulationProductionProliferatingReactionRegulationReportingRoleSolid NeoplasmT cell differentiationT memory cellT-LymphocyteTestingTumor ImmunityWorkaerobic glycolysisalpha ketoglutarateanti-PD1 antibodiesanti-PD1 therapyanti-canceranticancer activitycancer cellcancer immunotherapycancer therapychimeric antigen receptor T cellsconditional knockoutcytotoxic CD8 T cellsdemethylationeffector T cellexhaustionglucose uptakeimmune checkpoint blockadeimmunoregulationimprovedin vivoinhibitorlong term memorymetabolic fitnessmetabolic phenotypemitochondrial metabolismmouse modelnovel strategiesoxidationprogramsreceptorresponsetumortumor metabolismtumor progressiontumorigenesis
项目摘要
Summary
Immunotherapy has transformed cancer treatment and improved clinical outcomes, but it does not cure most
patients. Treatments such as anti-PD1 monoclonal antibodies and chimeric antigen receptor (CAR) T cells
function by boosting the activity of cancer-specific interferon gamma-producing Th1 CD4 T cells and
cytotoxic CD8 T cells (CTL). Increased effector function, however, must be balanced with the ability of anti-
cancer T cells to persist long-term. A key goal of immunotherapy is to enhance effector function while
maintaining T cell longevity and memory. It is now clear from work in the Rathmell lab that effector T cells
utilize high rates of glycolysis while memory cells utilize mitochondrial pathways. Here I propose to test cell
metabolism as a means to enhance both effector and memory T cell populations in immunotherapy. T cells
radically alter their metabolism upon activation and increase glycolysis and glutamine oxidation
(glutaminolysis) to support differentiation, effector function, and eventual generation of long-term memory that
depend on mitochondria. Modulation of T cell glutamine metabolism may augment the efficacy of
immunotherapy by enhancing both T cell effector function or memory capacity. The Rathmell Lab has shown
that the metabolic program aerobic glycolysis is essential for effector T cell (Teff) function in inflammation and
in tumors. Glutaminolysis complements glycolysis to fuel T cells by converting glutamine to the tricarboxylic
acid cycle intermediate alpha-ketoglutarate (aKG). Using a conditional knockout of the glutaminolysis enzyme
Glutaminase (GLS), which converts glutamine to glutamate, and an inhibitor of GLS that is currently in clinical
trials as an anti-cancer agent, we have found that inhibition of GLS leads to a compensatory increase in
glycolysis that enhances Th1 and CTL Teff function and differentiation. In addition to increasing effector
function, however, I found that GLS inhibition also increases expression of inhibitory receptors, and chronic
GLS deficiency ultimately suppresses T cells. In contrast, transient GLS inhibition enhanced Teff function while
also priming mitochondrial metabolism for a memory-like differentiation, and led to improved T cell persistence
in vivo. In this proposal, I will test the hypothesis that transient GLS inhibition can augment Teff function and
maintain T cell survival and memory to boost anti-cancer immunotherapy efficacy, whereas chronic GLS
inhibition will drive compensatory glycolysis, terminal Teff differentiation, and exhaustion. I will: (1) Test how
transient versus chronic GLS inhibition affects CTL fate by determining differences in memory T cell formation,
assessing the contribution of compensatory glycolysis to Teff phenotypes, and establishing the mitochondrial
consequences of GLS inhibition; and (2) Test the effect of GLS inhibition on the immunotherapy efficacy of
CD19-targeted CAR T cells and anti-PD1 treatment. These studies will demonstrate a new approach to
improve anti-cancer immunotherapy and highlight a strategy of using GLS inhibition to modulate T cell
metabolism and differentiation.
概括
免疫疗法改变了癌症治疗并改善了临床结果,但它并不能治愈大多数癌症
患者。抗 PD1 单克隆抗体和嵌合抗原受体 (CAR) T 细胞等治疗
通过增强癌症特异性干扰素 γ 产生 Th1 CD4 T 细胞的活性来发挥作用
细胞毒性 CD8 T 细胞 (CTL)。然而,效应器功能的增加必须与抗效应能力相平衡。
癌症T细胞能够长期存在。免疫疗法的一个关键目标是增强效应功能,同时
维持 T 细胞的寿命和记忆力。 Rathmell 实验室的工作现在清楚地表明,效应 T 细胞
利用高速率的糖酵解,而记忆细胞则利用线粒体途径。这里我建议测试cell
代谢作为增强免疫治疗中效应 T 细胞和记忆 T 细胞群的一种手段。 T细胞
激活后从根本上改变其代谢并增加糖酵解和谷氨酰胺氧化
(谷氨酰胺分解)支持分化、效应器功能和长期记忆的最终生成
依赖于线粒体。 T 细胞谷氨酰胺代谢的调节可能会增强
通过增强 T 细胞效应功能或记忆能力的免疫疗法。 Rathmell 实验室已经证明
代谢程序有氧糖酵解对于炎症和炎症中效应 T 细胞 (Teff) 的功能至关重要
在肿瘤中。谷氨酰胺分解通过将谷氨酰胺转化为三羧酸来补充糖酵解,为 T 细胞提供燃料
酸循环中间体α-酮戊二酸(aKG)。使用谷氨酰胺分解酶的条件敲除
谷氨酰胺酶(GLS),可将谷氨酰胺转化为谷氨酸,以及目前处于临床阶段的 GLS 抑制剂
作为抗癌剂的试验中,我们发现抑制 GLS 会导致代偿性增加
糖酵解增强 Th1 和 CTL Teff 功能和分化。除了增加效应器
然而,我发现 GLS 抑制也会增加抑制性受体的表达,并且慢性
GLS 缺陷最终会抑制 T 细胞。相反,短暂的 GLS 抑制增强了 Teff 功能,同时
还启动线粒体代谢以实现类似记忆的分化,并提高 T 细胞的持久性
体内。在这个提案中,我将测试短暂的 GLS 抑制可以增强 Teff 功能的假设,并且
维持 T 细胞存活和记忆以提高抗癌免疫治疗效果,而慢性 GLS
抑制将驱动代偿性糖酵解、终末 Teff 分化和衰竭。我将:(1)测试如何
短暂与慢性 GLS 抑制通过确定记忆 T 细胞形成的差异来影响 CTL 命运,
评估代偿性糖酵解对 Teff 表型的贡献,并建立线粒体
GLS 抑制的后果; (2)测试GLS抑制对免疫治疗效果的影响
CD19 靶向 CAR T 细胞和抗 PD1 治疗。这些研究将展示一种新方法
改进抗癌免疫治疗并强调利用 GLS 抑制调节 T 细胞的策略
代谢和分化。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Complex Integration of T-cell Metabolism and Immunotherapy.
- DOI:10.1158/2159-8290.cd-20-0569
- 发表时间:2021-07
- 期刊:
- 影响因子:28.2
- 作者:Madden MZ;Rathmell JC
- 通讯作者:Rathmell JC
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Zachary Madden其他文献
Matthew Zachary Madden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Zachary Madden', 18)}}的其他基金
Glycolysis and Glutaminase in CD8 T cell differentiation and anti-tumor immunity
CD8 T 细胞分化和抗肿瘤免疫中的糖酵解和谷氨酰胺酶
- 批准号:
9908440 - 财政年份:2020
- 资助金额:
$ 5.18万 - 项目类别:
相似海外基金
Delays in Acquisition of Oral Antineoplastic Agents
口服抗肿瘤药物的获取延迟
- 批准号:
9975367 - 财政年份:2020
- 资助金额:
$ 5.18万 - 项目类别:
Eliminate the difficulty of venous puncture in patients receiving antineoplastic agents - Development of a new strategy for the prevention of induration-
消除接受抗肿瘤药物的患者静脉穿刺的困难 - 制定预防硬结的新策略 -
- 批准号:
16K11932 - 财政年份:2016
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms of the antineoplastic agents inhibiting DNA replication and their applications to cancer patient treatmen
抗肿瘤药物抑制DNA复制的分子机制及其在癌症患者治疗中的应用
- 批准号:
19591274 - 财政年份:2007
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
PNET EXPERIMENTAL THERAPEUTICS--ANTINEOPLASTIC AGENTS AND TREATMENT DELIVERY
PNET 实验治疗——抗肿瘤药物和治疗实施
- 批准号:
6346309 - 财政年份:2000
- 资助金额:
$ 5.18万 - 项目类别:
TYROSINE KINASE INHIBITORS AS ANTINEOPLASTIC AGENTS
酪氨酸激酶抑制剂作为抗肿瘤剂
- 批准号:
2885074 - 财政年份:1999
- 资助金额:
$ 5.18万 - 项目类别:
TYROSINE KINASE INHIBITORS AS ANTINEOPLASTIC AGENTS
酪氨酸激酶抑制剂作为抗肿瘤剂
- 批准号:
6174221 - 财政年份:1999
- 资助金额:
$ 5.18万 - 项目类别: