Bone Regeneration Induced by the Sustained Release of Osteoinductive microRNAs from 3D-printed Constructs
3D 打印结构中持续释放骨诱导性 microRNA 诱导骨再生
基本信息
- 批准号:10311132
- 负责人:
- 金额:$ 4.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-03 至 2023-07-02
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAdvanced DevelopmentAdverse effectsAllograftingArchitectureAutologous TransplantationBiocompatible MaterialsBiodegradationBiologicalBiological AssayBiologyBiomedical EngineeringBone DevelopmentBone Morphogenetic ProteinsBone RegenerationBone TransplantationCalvariaCell Differentiation processCell-Matrix JunctionCellsClinicClinicalClinical TreatmentComplexDataDefectDevelopmentDimensionsDoseEssential GenesExtracellular MatrixFDA approvedFamilyFellowshipGelatinGene ExpressionGoalsGrowthHybridsImplantIn VitroInfiltrationInvestigationMedicineMethodsMicroRNAsNuclearNutrientOrgan TransplantationOrthopedicsOsteogenesisPatientsPolymersPorosityPositioning AttributeProductionPropertyProteinsRattusResearchResearch TrainingSignal TransductionStainsStructureTechnologyTestingTimeTissue EngineeringTissuesTranscriptWorkbonebone marrow mesenchymal stem cellbone metabolismcaprolactonecell motilityclinical applicationclinical translationclinically relevantcrosslinkdensitydesignin vivoin vivo regenerationindividualized medicineinnovationinsightmembermigrationmultidisciplinarynew technologynovelosteogenicpreventregeneration potentialregenerativereplacement tissuerestorationscaffold
项目摘要
Project Summary/Abstract:
Large bone defects are clincially challenging to treat and often necessitate bone grafting. Natural grafting
options include autografts and allografts; however, these replacement tissues are limited in supply and difficult
to match to the dimensional irregularities of complex bone defects. The development of tissue-engineered (TE)
synthetic grafts has become essential to overcome the limitations of natural grafts; however, deficient scaffold
fabrication methods and inefficient osteoinductive agents have prevented the clinical translation of traditional
TE constructs. Therefore, the design of advanced synthetic grafts that overcome these limitations would
greatly impact the clinical treatment of large bone defects. The long-term goal of this proposed work is to
develop biodegradable, 3D-printed constructs with osteoconductive and inductive properties toward clinical use
for the treatment of patient-specific bone defects. The objective of this proposal aims to develop a TE construct
for bone regeneration using a hybrid materials approach that includes both synthetic and natural polymers in
the 3D-printed structure, combined with the sustained release of osteoinductive microRNAs. Advanced TE
constructs for this investigation will combine 3D-printable, FDA-approved polymers with tunable biodegradation
rates with natural polymer coatings to sustain the release of osteoinductive microRNAs. The central hypothesis
of this work is that the sustained release of osteoinductive microRNAs from polymer-coated 3D-printed
constructs will enhance the osteogenic capabilities of synthetic grafts by prolonging regenerative signaling to
maximize bone regeneration. To test this hypothesis, we will characterize microRNA release from polymer-
coated 3D-printed constructs (Aim 1), assess in vitro osteogenic differentiation induced by microRNA release
from polymer-coated constructs (Aim 2), and evaluate the bone regeneration potential of polymer-coated
microRNA-incorporated 3D-printed constructs (Aim 3). Collectively, these data with elucidate mechanisms in
which microRNA release from polymer-coated 3D-printed scaffolds can be optimized to sustain the release of
osteoinductive signals and maximize bone regeneration. These results will advance the development of
synthetic TE constructs to include both osteoconductive and inductive properties that will effectively promote
bone regeneration, and thus significantly impact the clinical treatment of challenging, patient-specific bone
defects.
项目概要/摘要:
大面积骨缺损的治疗在临床上具有挑战性,通常需要植骨。自然嫁接
选择包括自体移植物和同种异体移植物;然而,这些替代组织的供应有限,
以匹配复杂骨缺损的尺寸不规则性。组织工程的发展
合成移植物对于克服天然移植物的局限性已变得至关重要;然而,缺乏支架
制造方法和低效的骨诱导剂阻碍了传统骨诱导剂的临床转化,
TE结构。因此,克服这些限制的先进合成移植物的设计将
极大地影响了大面积骨缺损的临床治疗。这项拟议工作的长期目标是
开发具有骨传导和诱导特性的可生物降解的3D打印结构,用于临床应用
用于治疗患者特定的骨缺损。本提案的目的是开发一种TE结构
使用混合材料方法进行骨再生,该方法包括合成和天然聚合物,
3D打印的结构,结合持续释放的骨诱导microRNA。高级TE
这项研究的结构将结合联合收割机3D打印,FDA批准的聚合物与可调生物降解
速率与天然聚合物涂层,以维持骨诱导microRNA的释放。核心假设
这项工作的一个重要方面是,从聚合物涂层的3D打印材料中持续释放骨诱导微RNA,
构建体将通过延长再生信号传导来增强合成移植物的成骨能力,
最大化骨再生。为了验证这一假设,我们将描述聚合物中microRNA的释放,
包被的3D打印构建体(目的1),评估microRNA释放诱导的体外成骨分化
从聚合物涂层结构(目的2),并评价聚合物涂层的骨再生潜力
microRNA掺入的3D打印构建体(Aim 3)。总的来说,这些数据阐明了
从聚合物涂覆的3D打印支架中释放的microRNA可以被优化以维持
骨诱导信号和最大化骨再生。这些成果将推动
合成TE构建体包括骨传导和诱导性质,
骨再生,从而显著影响具有挑战性的患者特异性骨的临床治疗
缺陷
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew T Remy其他文献
Rat Calvarial Bone Regeneration by 3D-Printed Beta-Tricalcium Phosphate Incorporating MicroRNA-200c
通过 3D 打印结合 MicroRNA-200c 的 β-磷酸三钙实现大鼠颅骨再生
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Matthew T Remy;Adil Akkouch;Li He;S. Eliason;M. Sweat;Tadkamol Krongbaramee;F. Qian;B. Amendt;Xuan Song;L. Hong - 通讯作者:
L. Hong
Matthew T Remy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew T Remy', 18)}}的其他基金
Bone Regeneration Induced by the Sustained Release of Osteoinductive microRNAs from 3D-printed Constructs
3D 打印结构中持续释放骨诱导性 microRNA 诱导骨再生
- 批准号:
10487443 - 财政年份:2021
- 资助金额:
$ 4.14万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 4.14万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 4.14万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 4.14万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 4.14万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 4.14万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 4.14万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 4.14万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 4.14万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 4.14万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 4.14万 - 项目类别:
Standard Grant