Controlled release of RNA-targeting therapy to promote healing of diabetic ulcers
RNA靶向疗法的受控释放促进糖尿病溃疡愈合
基本信息
- 批准号:10313210
- 负责人:
- 金额:$ 5.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdsorptionAmputationAngiogenic ProteinsAntibioticsBandageBiocompatible MaterialsBiologicalBiological AssayChargeChronicClinicalCodeComplications of Diabetes MellitusCuesDepositionDermalDiabetes MellitusDiseaseDoseDrug Delivery SystemsEffectivenessElectrostaticsEndothelial CellsEngineeringExcipientsGene ExpressionGenesHealth Care CostsHistologyHumanImpaired healingImpaired wound healingImpairmentIn VitroInflammationInflammatoryInvestigationIschemiaKineticsKnowledgeLeadMacrophage ActivationMalignant NeoplasmsMeasuresMediatingMedicareMesenteryMessenger RNAMicroRNAsModelingMolecularMolecular AnalysisMolecular WeightMusMyocardial InfarctionNatural regenerationNeuropathyNucleic AcidsNutrientOxygenPathway interactionsPatient-Focused OutcomesPatientsPharmaceutical PreparationsPhasePolymersProcessProcollagen-Proline DioxygenaseQuality of lifeRNARecurrenceRegulationResearchSignal PathwaySignaling MoleculeSmall Interfering RNASystemTNF geneTechniquesTherapeuticTimeTissuesTransfectionTranslatingTreatment EfficacyUlcerUntranslated RNAVaricose UlcerVascular Endothelial Growth FactorsWorkWound modelsangiogenesisbasechronic ulcerchronic woundcontrolled releasecytokinedecubitus ulcerdiabetic ulcerdiabetic wound healingeffective therapyefficacy testingfactor Agene functionhealingimmune activationimprovedin vitro Assayin vivoinhibitor/antagonistinsightlipid nanoparticlemortalitymortality risknon-healing woundsnucleasenucleic acid deliveryoverexpressionperfusion imagingpreventresponsesynergismtargeted treatmenttissue regenerationtooluptakewoundwound closurewound environmentwound healing
项目摘要
Project Summary
Non-healing ulcers are a common complication of diabetes, resulting in decreased quality of life, elevated rates
of amputation, increased risk of mortality, and high healthcare costs. Unfortunately, current treatments remain
outdated and inadequate. In diabetes, neuropathy and microvascular changes in dermal tissue lead to
dysregulated molecular cues, resulting in chronic inflammation and reduced angiogenesis that prevent wound
healing. Poor angiogenesis is particularly critical given the importance of vasculature in supplying oxygen,
nutrients, and systemic signaling molecules. Impairment of angiogenesis is in part driven by aberrant expression
of coding messenger RNAs (mRNAs) and non-coding microRNAs (miRNAs) at various time scales. Thus, one
promising approach to alter the course of diabetic ulcers is to directly target the expression of upregulated RNAs
in the non-healing state using nucleic acid RNA-targeting therapies; however, delivery challenges render nucleic
acid therapies clinically unfeasible. To address these delivery challenges, the Hammond Lab has developed and
demonstrated self-assembled electrostatic deposition of nucleic acids through the layer by layer (LbL) technique,
which leverages iterative adsorption of polyelectrolytes of alternating charge, to create conformal coatings on
wound bandages with tunable release kinetics. I propose to develop and investigate temporally controlled
release strategies to locally deliver RNA-targeting therapies that promote angiogenesis and healing of
diabetic ulcers. In Aim 1, I will formulate staged release RNA-targeting bandages to promote wound healing
since staged release of therapy for multiple targets will allow the bandages to address different phases of wound
healing. A proof-of-concept bandage will be developed to elute RNA-targeting therapy to stimulate angiogenesis
in both the inflammatory and proliferative wound healing phases, and it will be tested for efficacy in vitro and in
a murine in vivo diabetic ulcer model. In Aim 2, I will identify potential synergies of pro-angiogenic anti-miRs
(miRNA inhibitors), as inhibition of gene expression with anti-miRs enables regulation of many genes along
defined tissue-specific signaling pathways to enhance angiogenesis. Since it is also unknown how delivery timing
of these anti-miR combinations may impact efficacy, we will leverage controlled-release LbL bandages to
investigate this. Through this research, I will advance the delivery of nucleic acids with biomaterial systems and
the targeting of aberrantly expressed coding and non-coding RNAs to promote healing of diabetic wounds. This
work will lay the groundwork for expansion of this platform approach to other diseases of impaired tissue
regeneration where timing the delivery to the healing process is critical, such as venous ulcers, mesenteric
ischemia, and myocardial infarction.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam G Berger其他文献
Adam G Berger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam G Berger', 18)}}的其他基金
Controlled release of RNA-targeting therapy to promote healing of diabetic ulcers
RNA靶向疗法的受控释放促进糖尿病溃疡愈合
- 批准号:
10677024 - 财政年份:2021
- 资助金额:
$ 5.1万 - 项目类别:
相似海外基金
Molecular Simulations of Additive Self-Assembly, Rheology, and Surface Adsorption in Complex Fluids
复杂流体中添加剂自组装、流变学和表面吸附的分子模拟
- 批准号:
2901619 - 财政年份:2024
- 资助金额:
$ 5.1万 - 项目类别:
Studentship
An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS)
吸附压缩冷热能存储系统(ACCESS)
- 批准号:
EP/W027593/2 - 财政年份:2024
- 资助金额:
$ 5.1万 - 项目类别:
Research Grant
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
- 批准号:
24K17729 - 财政年份:2024
- 资助金额:
$ 5.1万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Thermal stability of adsorption solar power plants
吸附式太阳能发电厂的热稳定性
- 批准号:
2871817 - 财政年份:2024
- 资助金额:
$ 5.1万 - 项目类别:
Studentship
Computational Studies of Gas Adsorption in Special Nuclear Materials (SNMs).
特殊核材料(SNM)中气体吸附的计算研究。
- 批准号:
2903366 - 财政年份:2024
- 资助金额:
$ 5.1万 - 项目类别:
Studentship
Collaborative Research: Integrated experiments and simulations to understand the mechanism and consequences of polymer adsorption in films and nanocomposites
合作研究:综合实验和模拟来了解薄膜和纳米复合材料中聚合物吸附的机制和后果
- 批准号:
2312325 - 财政年份:2023
- 资助金额:
$ 5.1万 - 项目类别:
Standard Grant
Metal tolerance and metal adsorption through phycosphere control
通过藻圈控制实现金属耐受性和金属吸附
- 批准号:
23H02303 - 财政年份:2023
- 资助金额:
$ 5.1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Investigation of adsorption of exosomes on porous materials and regulating the behavior to create separation, purification and preservation techniques
研究外泌体在多孔材料上的吸附并调节行为以创建分离、纯化和保存技术
- 批准号:
23KJ0192 - 财政年份:2023
- 资助金额:
$ 5.1万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Reflection and adsorption of low energy hydrogen on solid surface
低能氢在固体表面的反射与吸附
- 批准号:
23H01158 - 财政年份:2023
- 资助金额:
$ 5.1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Super-Resolution Imaging of Surface Adsorption on Single Nanoparticles for Electrochemical Dechlorination
用于电化学脱氯的单个纳米颗粒表面吸附的超分辨率成像
- 批准号:
2303933 - 财政年份:2023
- 资助金额:
$ 5.1万 - 项目类别:
Standard Grant














{{item.name}}会员




