Molecular mechanisms of lytic bacteriophage infection of enterococci
肠球菌裂解性噬菌体感染的分子机制
基本信息
- 批准号:10309178
- 负责人:
- 金额:$ 3.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdsorptionAlternative TherapiesAnimalsAnti-Bacterial AgentsAntibiotic ResistanceAntibiotic TherapyAntibioticsAntigensBacteriaBacterial InfectionsBacteriophagesBindingBiochemicalBiological AssayBiologyBlood CirculationCell WallCell membraneCell surfaceCellsCellular biologyClinicalCytolysisDNADNA Restriction-Modification EnzymesDataDevelopmentEnterobacteriaceaeEnterococcusEnterococcus faecalisEventGenesGeneticGenomeGenomic DNAGoalsHospitalsHumanIndividualInfectionIntestinesKnowledgeLactococcusLeadLifeLyticModelingModificationMolecularMulti-Drug ResistanceMutationNosocomial InfectionsOutcomePhage ReceptorsPharmaceutical PreparationsPlasmidsPolysaccharidesPseudomonasPublishingReceptor GeneResistanceSepsisSpecificityStreptococcusSystemTherapeuticTreatment EfficacyVancomycinVancomycin ResistanceViralVirionVirulence FactorsVirusWorkbacterial fitnessbasecandidate selectioncombatdesignexperimental studyfitnessgenetic approachinsightintestinal barriermulti-drug resistant pathogennovelparticlepathogenpathogenic bacteriareceptorresistance factorssecondary infectiontherapeutic candidate
项目摘要
PROJECT SUMMARY
In recent decades there has been a rapid decline in effective antibiotic therapies and an increase in multidrug-
resistant (MDR) bacterial infections. One common MDR pathogen is the Gram-positive intestinal bacterium
Enterococcus faecalis which resists many antibiotics including “last-line-of-defense” drugs such as
vancomycin. MDR enterococci can expand in the intestine in individuals undergoing broad-spectrum antibiotic
therapy. This expansion can lead to E. faecalis translocation to the bloodstream, sepsis, and further shedding
of the bacterium, thus perpetuating these hospital-acquired infections. One potential strategy to combat MDR
enterococci is the use of bacteriophages (phages). Phages are viruses that infect and kill bacteria with high
specificity. Phage infection relies on binding to the bacterial cell surface, ejection of phage DNA into the
bacterial cell, replication of the phage genome, and viral particle release from the cell. The use of phages as
therapeutics raises concern similar to antibiotic use; bacteria will become resistant to infection, diminishing
therapeutic efficacy. Thus, before phages can become a standard clinical therapy, we must clearly understand
the specific mechanisms used by phages to infect bacteria and how bacteria respond to phage infection. To
begin to elucidate the mechanisms used by phages during infection, I challenged E. faecalis with lytic phages
and found that the enterococcal polysaccharide antigen is used for initial phage adsorption to various E.
faecalis strains, including strains that the phage cannot successfully infect. Along with this, I have shown that
the presence of a mobile plasmid in E. faecalis restricts phage infection. The goals of this project are to fill key
gaps in our basic knowledge of phage-bacteria interactions and to provide insights into the mechanisms that
influence the outcomes of phage infection, which will be beneficial knowledge for applied phage therapies. This
project encompasses the following two Specific Aims: Aim 1: Identify the receptor that promotes DNA entry
of Epa-dependent phages. This will be addressed through complementary biochemical assays to identify the
receptor that promotes phage DNA entry into E. faecalis. Aim 2: Define the genetic basis of endogenous
plasmids in restricting enterococcal phage infection. Here, I will use genetic approaches to identify a
novel, enterococcal anti-phage restriction mechanism encoded on a mobile plasmid. These experiments will
reveal new insights into the mechanisms that dictate enterococcal phage recognition and infection that will
ultimately aid in the development of informed phage therapies. In doing so, my results will expand our basic
knowledge surrounding enterococcal cell biology during phage infection and potentially identify new targets for
anti-enterococcal therapies.
项目总结
近几十年来,有效的抗生素疗法迅速减少,而多药耐药的情况有所增加。
耐药性(MDR)细菌感染。一种常见的耐多药病原体是革兰氏阳性肠道细菌
对多种抗生素耐药的粪肠球菌,包括诸如
万古霉素。耐多药肠球菌可在接受广谱抗生素治疗的患者的肠道内扩张
心理治疗。这种扩张可导致粪肠球菌移位到血液中,败血症,并进一步脱落。
从而使这些医院获得性感染永久化。对抗MDR的一个潜在战略
肠球菌是利用噬菌体(噬菌体)。噬菌体是感染和杀死细菌的病毒,具有高度的
专一性。噬菌体感染依赖于与细菌细胞表面的结合,将噬菌体DNA喷射到
细菌细胞,噬菌体基因组的复制,以及病毒颗粒从细胞中释放。利用噬菌体作为
治疗引发了类似于抗生素使用的担忧;细菌将对感染产生抵抗力,从而减少
治疗效果。因此,在噬菌体能够成为标准的临床治疗方法之前,我们必须清楚地了解
噬菌体感染细菌的具体机制以及细菌对噬菌体感染的反应。至
为了开始阐明噬菌体在感染过程中使用的机制,我用裂解噬菌体攻击粪肠球菌
发现肠球菌多糖抗原可用于对不同来源的E.
粪便菌株,包括噬菌体不能成功感染的菌株。除此之外,我还展示了
粪肠球菌中的移动质粒限制了噬菌体的感染。这个项目的目标是填补关键
我们对噬菌体-细菌相互作用的基本知识的差距,并提供对
影响噬菌体感染的转归,这将为噬菌体治疗的应用提供有益的认识。这
该项目包括以下两个具体目标:目标1:确定促进DNA进入的受体
依赖于EPA的噬菌体。这将通过补充生化分析来解决,以确定
促进噬菌体DNA进入粪肠球菌的受体。目标2:确定内源性疾病的遗传基础
限制肠球菌噬菌体感染的质粒。在这里,我将使用遗传方法来识别一种
编码在移动质粒上的新型肠球菌抗噬菌体限制机制。这些实验将
揭示肠球菌噬菌体识别和感染的新机制
最终帮助开发知情的噬菌体疗法。通过这样做,我的结果将扩展我们的基本
关于噬菌体感染期间肠球菌细胞生物学的知识,并可能确定新的目标
肠球菌的抗病治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cydney N Johnson其他文献
Cydney N Johnson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cydney N Johnson', 18)}}的其他基金
Molecular mechanisms of lytic bacteriophage infection of enterococci
肠球菌裂解性噬菌体感染的分子机制
- 批准号:
10532141 - 财政年份:2021
- 资助金额:
$ 3.4万 - 项目类别:
相似海外基金
Molecular Simulations of Additive Self-Assembly, Rheology, and Surface Adsorption in Complex Fluids
复杂流体中添加剂自组装、流变学和表面吸附的分子模拟
- 批准号:
2901619 - 财政年份:2024
- 资助金额:
$ 3.4万 - 项目类别:
Studentship
An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS)
吸附压缩冷热能存储系统(ACCESS)
- 批准号:
EP/W027593/2 - 财政年份:2024
- 资助金额:
$ 3.4万 - 项目类别:
Research Grant
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
- 批准号:
24K17729 - 财政年份:2024
- 资助金额:
$ 3.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Thermal stability of adsorption solar power plants
吸附式太阳能发电厂的热稳定性
- 批准号:
2871817 - 财政年份:2024
- 资助金额:
$ 3.4万 - 项目类别:
Studentship
Computational Studies of Gas Adsorption in Special Nuclear Materials (SNMs).
特殊核材料(SNM)中气体吸附的计算研究。
- 批准号:
2903366 - 财政年份:2024
- 资助金额:
$ 3.4万 - 项目类别:
Studentship
Metal tolerance and metal adsorption through phycosphere control
通过藻圈控制实现金属耐受性和金属吸附
- 批准号:
23H02303 - 财政年份:2023
- 资助金额:
$ 3.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Integrated experiments and simulations to understand the mechanism and consequences of polymer adsorption in films and nanocomposites
合作研究:综合实验和模拟来了解薄膜和纳米复合材料中聚合物吸附的机制和后果
- 批准号:
2312325 - 财政年份:2023
- 资助金额:
$ 3.4万 - 项目类别:
Standard Grant
Investigation of adsorption of exosomes on porous materials and regulating the behavior to create separation, purification and preservation techniques
研究外泌体在多孔材料上的吸附并调节行为以创建分离、纯化和保存技术
- 批准号:
23KJ0192 - 财政年份:2023
- 资助金额:
$ 3.4万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Super-Resolution Imaging of Surface Adsorption on Single Nanoparticles for Electrochemical Dechlorination
用于电化学脱氯的单个纳米颗粒表面吸附的超分辨率成像
- 批准号:
2303933 - 财政年份:2023
- 资助金额:
$ 3.4万 - 项目类别:
Standard Grant
Science for Boundary Lubrication - Essence of Low Friction Mechanism Based on Structure and Dynamics of Additive Adsorption Layer
边界润滑科学——基于添加剂吸附层结构和动力学的低摩擦机制本质
- 批准号:
23H05448 - 财政年份:2023
- 资助金额:
$ 3.4万 - 项目类别:
Grant-in-Aid for Scientific Research (S)