Ultrasound Enhanced Extracorporeal Membrane Oxygenation

超声增强体外膜氧合

基本信息

  • 批准号:
    10323520
  • 负责人:
  • 金额:
    $ 29.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Approximately 16,000 patients received artificial pulmonary support via extra-corporeal membrane oxygenation (ECMO) in 2019. During ECMO, hollow fiber membrane (HFM) gas exchangers require a surface area of ~2 m2 to achieve therapeutic gas transfer; however, this large contact area with the blood activates the coagulation cascade that requires systemic anticoagulation for suppression, usually with heparin. Although heparin reduces the frequency of clotting, it does not effectively inhibit the surface deposition of platelets and proteins. The consumption of these critical clotting components, as well as continuous administration of systemic anticoagulant, results in an increased risk of bleeding during ECMO and increases the risk of complications and mortality. We propose that reducing the surface area of the HFM gas exchanger will lead to less clotting and require less anticoagulant use, reducing the incidence of both thrombosis and hemorrhage. To achieve this, Boundless Science is developing a novel blood oxygenation system that uses ultrasound to dramatically enhance gas transfer efficiency, and thereby reduce the required gas exchanger area. A smaller gas exchanger will induce less clotting and require less anticoagulation and associated bleeding risks. An additional benefit is that a smaller surface area will allow us to develop a dramatically smaller ECMO system, offering the potential for ambulatory ECMO. Our initial results with ultrasound-enhanced ECMO (US-ECMO) show that ultrasound (US) enhances the rate of oxygen transport across a planar nano-porous polypropylene membrane by 4–6.4-fold. We hypothesize that US enhances transport through two mechanisms. First, the absorption of US travelling through the blood induces a bulk force, which in turn generates flow known as bulk streaming. Second, US oscillates gas/blood menisci at the membrane surface, rapidly mixing the blood near the membrane in a process known as microstreaming. Blood mixing from these mechanisms disrupts the boundary layer at the blood-membrane interface, steepening the oxygen gradient and driving faster diffusion. This proposal seeks to identify the US and membrane configurations that maximize gas exchange within clinically relevant HFM. We will constrain US parameters to avoid blood damage. We will progress toward this objective through the following specific aims. Aim 1) Determine the specific ultrasound parameters (amplitude, frequency, duty cycle, pulse duration, and transducer geometry) that separately optimize bulk streaming and microstreaming, while avoiding hemolysis, inertial cavitation, excessive heating, and bubble generation. Aim 2) Determine the maximal fiber bundle thickness over which acoustic streaming and microstreaming are effective. Aim 3) Fabricate and evaluate a custom ultrasound delivery system that safely enhances oxygen transport by at least seven-fold. Successful results will not only show the potential of US-ECMO but will provide the necessary design guidelines to drive the development of a clinically viable US-ECMO system.
项目摘要 约16,000例患者通过体外膜肺氧合接受人工肺支持 2019年的ECMO。在ECMO期间,中空纤维膜(HFM)气体交换器需要约2 m2来实现治疗气体转移;然而,与血液的这种大接触面积激活了 需要全身抗凝抑制的凝血级联反应,通常使用肝素。虽然 肝素降低了凝血的频率,它不能有效地抑制血小板的表面沉积, proteins.这些关键凝血成分的消耗,以及持续给予 全身抗凝剂,导致ECMO期间出血风险增加, 并发症和死亡率。 我们建议减少HFM气体交换器的表面积将导致较少的凝血,并且需要较少的 抗凝剂的使用,降低血栓形成和出血的发生率。为了实现这一目标, 科学正在开发一种新的血液氧合系统,该系统使用超声波来显着增强气体 传输效率,从而减少所需的气体交换器面积。较小的气体交换器将导致 更少的凝血,需要更少的抗凝和相关的出血风险。一个额外的好处是, 更小的表面积将使我们能够开发一个更小的ECMO系统, 动态ECMO。我们对超声增强ECMO(US-ECMO)的初步结果显示,超声(US) 将氧气通过平面纳米多孔聚丙烯膜的传输速率提高4 - 6.4倍。 我们假设,美国通过两种机制提高运输。第一,美国旅游的吸引力 通过血液产生体积力,该体积力又产生称为体积流的流动。二是美国 使膜表面的气体/血液弯月面振荡,使膜附近的血液快速混合 这个过程被称为微流。来自这些机制的血液混合破坏了在血液中的边界层。 血液-膜界面,使氧梯度变陡并驱动更快的扩散。 该提案旨在确定美国和膜配置,最大限度地提高气体交换内 临床相关HFM。我们将限制US参数以避免血液损伤。我们将朝着这个方向前进 通过以下具体目标。目的1)确定特定的超声参数(振幅, 频率、占空比、脉冲持续时间和换能器几何形状),分别优化批量流, 微流,同时避免溶血、惯性空化、过度加热和气泡产生。目标2) 确定声流和微流有效的最大纤维束厚度。 目的3)制造和评估一种定制的超声输送系统,通过以下方式安全地增强氧气输送: 至少七倍。成功的结果不仅将展示US-ECMO的潜力,而且将提供 必要的设计指南,以推动临床可行的US-ECMO系统的开发。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Jones其他文献

Andrew Jones的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Jones', 18)}}的其他基金

Extra-Corporeal Oxygenator with Minimal Blood Surface Contact
与血液表面接触最少的体外氧合器
  • 批准号:
    10760184
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
Aerosol Ventilation to Reduce Ventilator Induced Lung Injury
气雾通气可减少呼吸机引起的肺损伤
  • 批准号:
    10383334
  • 财政年份:
    2022
  • 资助金额:
    $ 29.99万
  • 项目类别:
Aerosol Ventilation for Rapid Cooling of Transplant Donor Lungs
用于快速冷却移植供体肺的气雾通气
  • 批准号:
    10481907
  • 财政年份:
    2022
  • 资助金额:
    $ 29.99万
  • 项目类别:

相似海外基金

Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
  • 批准号:
    MR/Z503605/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
  • 批准号:
    2336167
  • 财政年份:
    2024
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
  • 批准号:
    2402691
  • 财政年份:
    2024
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
  • 批准号:
    24K12150
  • 财政年份:
    2024
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
  • 批准号:
    2341428
  • 财政年份:
    2024
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
  • 批准号:
    DE240100561
  • 财政年份:
    2024
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
  • 批准号:
    10065645
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
  • 批准号:
    23K09542
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
  • 批准号:
    23K07552
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
  • 批准号:
    23K07559
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了