Improving iPSC reprogramming and CRISPR gene editing workflows and efficacy using CellRaft technology
使用 CellRaft 技术改进 iPSC 重编程和 CRISPR 基因编辑工作流程和功效
基本信息
- 批准号:10324993
- 负责人:
- 金额:$ 25.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcademiaAdherent CultureAutomationCapitalCase StudyCell Culture TechniquesCell LineCell SeparationCell SurvivalCellsCellular MorphologyClinicalClinical TrialsClone CellsClustered Regularly Interspaced Short Palindromic RepeatsConsumptionCustomDNA Sequence AlterationDermalDevelopmentDiseaseDissociationElectroporationEnsureEquipmentEvaluationFibroblastsGenesGeneticHarvestHumanImageIndustryInvestmentsLaboratoriesMaintenanceManualsMeasuresMethodologyMethodsMicroscopeMicroscopicMonitorMorphologyNaturePainPatientsPhasePhenotypePlaguePolystyrenesPopulationProcessProtocols documentationPublishingResearch PersonnelSeminalSickle Cell AnemiaSorting - Cell MovementStainsSystemTechniquesTechnologyTherapeuticTimeTissuesViralVisualizationbasebeta Thalassemiacell immortalizationcell typecostcost effectivecost efficientculture platesdrug developmentdrug discoveryfeedinggene therapyimprovedindividual patientinduced pluripotent stem cellinstrumentationmicrosystemsnext generation sequencingpersonalized medicinepluripotencyprecision drugsprogramsstem cell growthstem cellssuccesstool
项目摘要
Project Summary
Induced pluripotent stem cells (iPSCs) have become a commonly used tool to generate multiple cell types from
a given individual patient. Reprogramming non-invasively harvested cells, such as dermal fibroblasts, into
iPSCs, allows investigators to generate any cell type from a patient with known genetic and clinical backgrounds.
This method has been particularly powerful for cases in which a disease condition manifests in a tissue where
acquiring patient-derived primary cells is challenging, or there are genetic mutations. However, the workflows
associated with reprogramming, CRISPR gene editing, and differentiating iPSCs are low-throughput, costly,
time-consuming, and not supported by commercially available automated instrumentation. Customized
automation systems have been published and generally require considerable capital investment, multiple types
of equipment, custom programming, and commitment to a single reprogramming method. There is an unmet
need in academia and industry for technology that can improve the efficiency and success rates of a)
reprogramming, b) iPSC viability, and c) the ability to generate clonally derived CRISPR edited cell lines in an
automated fashion. The development of streamlined workflows on a single platform that can deliver higher
efficiencies in iPSC reprogramming and cell line development is likely to dramatically enhance the utility and
throughput of the technology, thereby accelerating the use of iPSCs in personalized medicine and drug
discovery. Cell Microsystems proposes the use of the CellRaft Technology, comprising the automated AIR
System and CytoSort Array cell culture consumable as a cost-effective, automated, and gentle solution that can
solve many of the pain points that plague these critical workflows. In this Phase I program, we will develop
protocols for the culture, reprogramming, and editing of iPSCs using our proprietary consumable and
instrumentation and demonstrate that our technology provides faster, more cost effective, and more efficient
workflows for iPSC cloning. Commercially, there is a tremendous potential market in laboratories across all
industries that perform these workflows, and our company has a proven successful track record in developing
tools for the drug discovery market.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jessica Hartman其他文献
Jessica Hartman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jessica Hartman', 18)}}的其他基金
Rapid identification and selection of functional antigen-specific monoclonalantibodies by FcGR-enabled screening on CellRaft Arrays in the CellRaft AIRSystem
通过在 CellRaft AIRSystem 中的 CellRaft 阵列上进行 FcGR 筛选,快速鉴定和选择功能性抗原特异性单克隆抗体
- 批准号:
10698784 - 财政年份:2021
- 资助金额:
$ 25.66万 - 项目类别:
Three-dimensional organoid culture using the CellRaft microwell technology
使用 CellRaft 微孔技术进行三维类器官培养
- 批准号:
10227800 - 财政年份:2020
- 资助金额:
$ 25.66万 - 项目类别:
Three-dimensional organoid culture using the CellRaft microwell technology
使用 CellRaft 微孔技术进行三维类器官培养
- 批准号:
10081103 - 财政年份:2020
- 资助金额:
$ 25.66万 - 项目类别:
High Throughput CRISPR/Cas9 cell line generation using the CellRaft Array
使用 CellRaft 阵列生成高通量 CRISPR/Cas9 细胞系
- 批准号:
9910418 - 财政年份:2017
- 资助金额:
$ 25.66万 - 项目类别:
相似海外基金
Probe-type nanowire sensor for label-free, in-situ, ultrasensitive detection of biomarkers from single cell in adherent culture
探针型纳米线传感器,用于无标记、原位、超灵敏地检测贴壁培养中单细胞的生物标志物
- 批准号:
21K14653 - 财政年份:2021
- 资助金额:
$ 25.66万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Rolled Scaffold for High-Density Adherent Culture of Mammalian Cells
职业:用于哺乳动物细胞高密度贴壁培养的滚动支架
- 批准号:
1848251 - 财政年份:2019
- 资助金额:
$ 25.66万 - 项目类别:
Continuing Grant














{{item.name}}会员




