Fine-Mapping Genome-Wide Associated Loci using Multi-omics Data to Identify Mechanisms Affecting Serious Mental Illness
使用多组学数据精细绘制全基因组相关基因座,以确定影响严重精神疾病的机制
基本信息
- 批准号:10322735
- 负责人:
- 金额:$ 67.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2024-10-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAnteriorAutopsyBindingBiologicalBrainBrain regionBypassCell modelCellsCodeCommunitiesDNADataData SetDevelopmentDiseaseDorsalElementsGenesGenetic RiskGenetic TranscriptionGenetic VariationGenome MappingsGenomicsGoalsHumanIndividualInvestigationKnowledgeLateralLinkMapsMass Spectrum AnalysisMeasuresMental disordersMessenger RNAMethodsModelingMultiomic DataNeuronsPathologyPathway interactionsPatternPhosphorylationPost-Translational Protein ProcessingPrefrontal CortexProtein AnalysisProtein IsoformsProteinsProteomeProteomicsQuantitative Trait LociRNARegulationResourcesRibosomesRiskRisk FactorsSNP genotypingSample SizeSet proteinSingle Nucleotide PolymorphismSiteSpecificityTestingTissuesTranscriptTranslationsUbiquitinationUntranslated RNAVariantbasebrain tissuecausal variantcell typecingulate cortexcohortdisorder riskexperimental studygenome wide association studygenome-wideglycosylationinsightlearning strategymultiple omicsnovelprotein expressionproteogenomicsrelating to nervous systemrisk variantsevere mental illnesstooltranscriptometranscriptome sequencingtranscriptomics
项目摘要
Genome-wide association studies have been key for identifying genetic variation associated
with psychiatric disorders. Whenever these GWAS are based on large sample sizes, however,
they implicate a plethora of single nucleotide polymorphisms (SNPs) in risk. This polygenicity
presents challenges for mapping risk variation onto the biological mechanisms that predispose
individuals to illness. Many studies have integrated genomic and transcriptomic variation with the
goal of colocalizing the GWAS SNP associations and cis transcriptional patterns determined by
expression quantitative trait loci (eQTLs), as well as other QTLs. In some instances, these studies
highlight one or more genes whose transcriptomic variation is driven largely by variation in specific
risk SNPs. For a substantial fraction of the risk loci, however, colocalization is inconsistent across
studies or no effect on transcription is observed. These missing links between genetic risk variation
and biological variation could be due to many factors, including cell-type specificity, developmental
patterns, or missing -omics characterizations. Notably, bulk tissue and even single cell mRNA
levels are imperfect predictors of the cellular levels of the proteins they code for. We hypothesize
that a substantial portion of these missing links is due to our limited knowledge of how proteomic
variation relates to genetic variation in the human brain. SNPs can regulate the proteome via
mechanisms that “skip” transcript levels and protein levels are tightly regulated by posttranslational
modifications (PTMs) that are not readily predictable from the transcriptome.
We propose to characterize transcriptomic and proteomic variation in human post-mortem
brain, specifically protein expression (Aim 1); PTMs (Aim 2); map genetic variation onto
transcriptomic (eQTLs) and proteome and PTM variation (pQTLs and PTMQTLs) and evaluate their
interrelationships (Aim 3); and then perform colocalization analysis to inform the biological
pathways by which genetic variation confers risk to psychiatric disorders (Aim 4). In our preliminary
proteogenomic experiments, we combined proteomics with SNP genotyping to identify pQTLs.
We discovered that a substantial fraction of pQTLs bypass the transcriptome (~50%), in line with
another recent human brain pQTL study and our hypothesis.
Our aims are consistent with goals from RFA-MH-21-100: (1) develop novel proteomic
and other omics resources; (2) use them to map how genetic risk variation influences
omics features in neural tissue and cell types; and (3) provide a high confidence set of
causal variants, genes, and isoforms that likely contribute to disease risk, enhancing our
insights into proximate disease mechanisms.
全基因组关联研究一直是识别遗传变异相关的关键
患有精神疾病然而,每当这些GWAS基于大样本量时,
它们暗示了过多的单核苷酸多态性(SNPs)的风险。这种多基因性
提出了将风险变化映射到易患疾病的生物机制的挑战,
个人生病。许多研究已经将基因组和转录组变异与
目标是共定位GWAS SNP关联和顺式转录模式,
表达数量性状基因座(eQTL)以及其他QTL。在某些情况下,这些研究
突出一个或多个基因,其转录组变异主要由特异性
风险SNP。然而,对于相当一部分的风险位点,共定位在不同的区域是不一致的。
研究或没有观察到对转录的影响。这些遗传风险变异
生物学变异可能是由于许多因素,包括细胞类型特异性,发育
模式或缺失的组学特征。值得注意的是,大块组织甚至单细胞mRNA
水平是它们编码的蛋白质的细胞水平的不完美预测器。我们假设
这些缺失环节的很大一部分是由于我们对蛋白质组学如何
变异与人类大脑中的遗传变异有关。SNP可以通过以下途径调节蛋白质组:
“跳过”转录水平和蛋白质水平的机制是由翻译后
这些修饰(PTM)不容易从转录组中预测。
我们建议描述人类死后组织中转录组和蛋白质组的变化,
大脑,特别是蛋白质表达(目标1); PTM(目标2);将遗传变异映射到
转录组(eQTL)和蛋白质组和PTM变异(pQTL和PTMQTL),并评估其
相互关系(目标3);然后进行共定位分析,以告知生物学
遗传变异赋予精神疾病风险的途径(目标4)。在我们的初步调查中
在蛋白质组学实验中,我们将蛋白质组学与SNP基因分型相结合来鉴定pQTL。
我们发现,相当一部分pQTL绕过转录组(约50%),这与
另一个最近的人脑pQTL研究和我们的假设。
我们的目标与RFA-MH-21-100的目标一致:(1)开发新的蛋白质组学
和其他组学资源;(2)使用它们来绘制遗传风险变异如何影响
神经组织和细胞类型的组学特征;以及(3)提供一组高置信度的
可能导致疾病风险的因果变异、基因和亚型,增强我们的认识
深入了解疾病的发病机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BERNIE DEVLIN其他文献
BERNIE DEVLIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BERNIE DEVLIN', 18)}}的其他基金
Fine-Mapping Genome-Wide Associated Loci using Multi-omics Data to Identify Mechanisms Affecting Serious Mental Illness
使用多组学数据精细绘制全基因组相关基因座,以确定影响严重精神疾病的机制
- 批准号:
10115941 - 财政年份:2021
- 资助金额:
$ 67.57万 - 项目类别:
Fine-Mapping Genome-Wide Associated Loci using Multi-omics Data to Identify Mechanisms Affecting Serious Mental Illness
使用多组学数据精细绘制全基因组相关基因座,以确定影响严重精神疾病的机制
- 批准号:
10524034 - 财政年份:2021
- 资助金额:
$ 67.57万 - 项目类别:
3/4 - The Autism Sequencing Consortium: Autism Gene Discovery in >50,000 Exomes
3/4 - 自闭症测序联盟:在 >50,000 个外显子组中发现自闭症基因
- 批准号:
9215254 - 财政年份:2017
- 资助金额:
$ 67.57万 - 项目类别:
3/4 - The Autism Sequencing Consortium: Autism Gene Discovery in >50,000 Exomes
3/4 - 自闭症测序联盟:在 >50,000 个外显子组中发现自闭症基因
- 批准号:
10115120 - 财政年份:2017
- 资助金额:
$ 67.57万 - 项目类别:
3/4 - The Autism Sequencing Consortium: Autism gene discovery in >20,000 exomes
3/4 - 自闭症测序联盟:在超过 20,000 个外显子组中发现自闭症基因
- 批准号:
8478295 - 财政年份:2013
- 资助金额:
$ 67.57万 - 项目类别:
3/4 - The Autism Sequencing Consortium: Autism gene discovery in >20,000 exomes
3/4 - 自闭症测序联盟:在超过 20,000 个外显子组中发现自闭症基因
- 批准号:
8729014 - 财政年份:2013
- 资助金额:
$ 67.57万 - 项目类别:
Admixture Mapping Schizophrenia Genes in Oceanic Palau
太平洋帕劳精神分裂症基因混合图谱
- 批准号:
7097936 - 财政年份:2003
- 资助金额:
$ 67.57万 - 项目类别:
Admixture Mapping Schizophrenia Genes in Oceanic Palau
太平洋帕劳精神分裂症基因混合图谱分析
- 批准号:
6319644 - 财政年份:2003
- 资助金额:
$ 67.57万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 67.57万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 67.57万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 67.57万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 67.57万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 67.57万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 67.57万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 67.57万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 67.57万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 67.57万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 67.57万 - 项目类别:
Grant-in-Aid for Early-Career Scientists