GATA Factor Mechanisms in Erythroid Regeneration

红细胞再生中的 GATA 因子机制

基本信息

  • 批准号:
    10322093
  • 负责人:
  • 金额:
    $ 38.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-01 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

ABSTRACT Erythropoiesis, the production of red blood cells (RBCs), is fine-tuned to meet physiological demands. During regeneration or “stress erythropoiesis” caused by anemia, a subset of genes and proteins are upregulated in association with an increased rate of RBC production. A critical gap in understanding erythroid regeneration hinges on whether the activation of gene regulatory networks in erythroid progenitors (driven by transcription factors) are stress-specific or represent broader control mechanisms in other contexts. Moreover, the underlying etiologies in which the erythroid system loses its ability to regenerate in chronic anemias are often unclear. We discovered that the Sterile Alpha Motif Domain-14 (Samd14) gene is elevated in models of acute/chronic anemia. Samd14 is regulated by the transcription factor GATA2, which coordinates a network of genes with critical functions in hematopoiesis and hematologic disease. The GATA2-occupied Samd14 cis-element (Samd14-Enh) is required for survival in a model of hemolytic anemia, but dispensable for steady state erythropoiesis. Erythroid progenitors lacking Samd14-Enh have impaired c-Kit signaling, a quintessential pathway regulating hematopoiesis and erythropoiesis. These results reveal the involvement of a GATA2-Samd14-c-Kit regulatory axis in erythroid regeneration. Whereas SAM domain-containing proteins are involved in hematopoiesis and cell signaling, and several are upregulated in anemia, their mechanisms of action are not well understood. Our data suggests additional cohorts of enhancers with properties mimicking the Samd14-Enh are anemia-regulated. We hypothesize that Samd14 and additional GATA2 and Regeneration-Activated (G2R) enhancers control erythroid regeneration. In Aim 1, mechanistic analyses in human and mouse will define Samd14 requirements for cell signaling and survival of erythroid progenitors. Aim 2 will delineate a GATA2 and anemia-regulated (G2R) gene network governing a sector of the complex biology surrounding anemia responses. Approaches using primary human/mouse cells and innovative mouse genetic model approaches will test SAMD14 mechanisms (and other SAM domain proteins) in c-Kit signaling and erythroid regeneration. These aims will establish valuable contrasts between homeostatic and regenerative erythropoietic mechanisms, enhancer knockout and gene knockout phenotypes, and between functionally-distinct cis-elements which contain similar sequence and molecular properties. By elucidating a GATA2-Samd14-c-Kit axis in acute anemia, and global/locus-specific GATA2 mechanisms of Samd14-Enh-like cis-elements, we expect these studies will reveal fundamental gene regulatory mechanisms in erythroid regeneration with implications in hematologic disease, including anemias.
摘要 红细胞生成,即红细胞(RBC)的产生,经过微调以满足生理需求。期间 由于贫血引起的再生或“应激性红细胞生成”, 与红细胞生成率增加有关。理解红细胞再生的关键差距 取决于红系祖细胞中基因调控网络的激活(由转录驱动 因素)是压力特异性的,或者在其他情况下代表更广泛的控制机制。此外,底层 红系系统在慢性贫血中丧失其再生能力的病因常常不清楚。我们 发现不育α基序结构域-14(Samd 14)基因在急性/慢性贫血模型中升高。 Samd 14受转录因子GATA 2调节,GATA 2协调一个基因网络, 在造血和血液病中的作用。GATA 2占据的Samd 14顺式元件(Samd 14-Enh) 是溶血性贫血模型中存活所必需的,但对于稳态红细胞生成是必需的。红系 缺乏Samd 14-Enh的祖细胞具有受损的c-Kit信号传导,c-Kit信号传导是一种典型的调节细胞凋亡的途径。 造血和红细胞生成。这些结果揭示了GATA 2-Samd 14-c-Kit调节蛋白的参与。 轴在红细胞再生中的作用。而含有SAM结构域的蛋白质参与造血和细胞增殖, 尽管在贫血症中有几种蛋白质被上调,但它们的作用机制尚不清楚。我们的数据 提示具有模拟Samd 14-Enh特性的增强子的另外的群组是贫血调节的。我们 假设Samd 14和另外GATA 2和再生激活(G2 R)增强子控制红细胞 再生在目标1中,人和小鼠中的机制分析将定义细胞对Samd 14的要求。 信号传导和红系祖细胞的存活。目的2:克隆GATA 2和贫血调节基因(G2 R) 控制着围绕贫血反应的复杂生物学的一部分。使用初级 人/小鼠细胞和创新的小鼠遗传模型方法将测试SAMD 14机制(以及其他 SAM结构域蛋白)在c-Kit信号传导和红细胞再生中的作用。这些目标将建立有价值的对比 稳态和再生红细胞生成机制之间的关系,增强子敲除和基因敲除 表型,以及含有相似序列和分子的功能不同的顺式元件之间的差异。 特性.通过阐明急性贫血中的GATA 2-Samd 14-c-Kit轴,以及全局/基因座特异性GATA 2 Samd 14-Enh样顺式元件的机制,我们希望这些研究将揭示基本的基因调控 红细胞再生机制与血液病,包括贫血的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kyle J Hewitt其他文献

Anemia-Activated Cis Regulatory Requirements for Erythroid Regeneration
  • DOI:
    10.1182/blood-2022-167544
  • 发表时间:
    2022-11-15
  • 期刊:
  • 影响因子:
  • 作者:
    Yichao Zhou;Linda Chee;Suhita Ray;Meg Schaefer;Venkatasai Rahul Dogiparthi;Jordan Rowley;Kyle J Hewitt
  • 通讯作者:
    Kyle J Hewitt
Lipid-Dependent Roles for SAMD14 in Stress Erythropoiesis
  • DOI:
    10.1182/blood-2024-207597
  • 发表时间:
    2024-11-05
  • 期刊:
  • 影响因子:
  • 作者:
    Pooja Roy;Suhita Ray;Suyong Choi;Nicholas Woods;Kyle J Hewitt
  • 通讯作者:
    Kyle J Hewitt
Early Response Transcription Factors in Erythroid Regeneration
  • DOI:
    10.1182/blood-2023-189994
  • 发表时间:
    2023-11-02
  • 期刊:
  • 影响因子:
  • 作者:
    Yichao Zhou;Kyle J Hewitt
  • 通讯作者:
    Kyle J Hewitt
The Sterile Alpha Motif Protein-1 Transcription Factor Controls Hematopoiesis through Modulation of H3K4 Methylation
  • DOI:
    10.1182/blood-2024-209230
  • 发表时间:
    2024-11-05
  • 期刊:
  • 影响因子:
  • 作者:
    Meg Schaefer;Venkatasai Rahul Dogiparthi;Yichao Zhou;Kyle J Hewitt
  • 通讯作者:
    Kyle J Hewitt
Transcriptional Control of Erythropoiesis Via a Kit-Response Cistrome
  • DOI:
    10.1182/blood-2024-208254
  • 发表时间:
    2024-11-05
  • 期刊:
  • 影响因子:
  • 作者:
    Venkatasai Rahul Dogiparthi;Linda Chee;Jordan Rowley;Kyle J Hewitt
  • 通讯作者:
    Kyle J Hewitt

Kyle J Hewitt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kyle J Hewitt', 18)}}的其他基金

Hematopoietic Signaling Pathway Mechanism in a GATA Factor-Dependent Network
GATA 因子依赖性网络中的造血信号通路机制
  • 批准号:
    10672858
  • 财政年份:
    2022
  • 资助金额:
    $ 38.31万
  • 项目类别:
GATA Factor Mechanisms in Erythroid Regeneration
红细胞再生中的 GATA 因子机制
  • 批准号:
    10097331
  • 财政年份:
    2021
  • 资助金额:
    $ 38.31万
  • 项目类别:
GATA Factor Mechanisms in Erythroid Regeneration
红细胞再生中的 GATA 因子机制
  • 批准号:
    10538585
  • 财政年份:
    2021
  • 资助金额:
    $ 38.31万
  • 项目类别:
Hematopoietic Signaling Pathway Mechanism in a GATA Factor-Dependent Network
GATA 因子依赖性网络中的造血信号通路机制
  • 批准号:
    10117106
  • 财政年份:
    2018
  • 资助金额:
    $ 38.31万
  • 项目类别:
Single-Cell and Spatial Transcriptomics Core
单细胞和空间转录组学核心
  • 批准号:
    10714238
  • 财政年份:
    2018
  • 资助金额:
    $ 38.31万
  • 项目类别:
Mechanisms of a GATA Factor-Dependent Hematopoietic Signaling Pathway
GATA 因子依赖性造血信号通路的机制
  • 批准号:
    9295276
  • 财政年份:
    2017
  • 资助金额:
    $ 38.31万
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.31万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 38.31万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.31万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.31万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 38.31万
  • 项目类别:
    Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.31万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.31万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.31万
  • 项目类别:
    Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 38.31万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 38.31万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了