Pairing Modeling and Experiment to Understand Microtubule Behavior in Healthy and Injured Neurons
配对建模和实验以了解健康和受损神经元的微管行为
基本信息
- 批准号:10445753
- 负责人:
- 金额:$ 33.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-21 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AcuteAddressArchitectureAxonBehaviorBiological AssayBiophysical ProcessCellsCouplingCytoskeletal ModelingCytoskeletonDendritesDevelopmentDifferential EquationDrosophila genusEquilibriumExcisionFilamentFoundationsGenerationsGeneticGeometryGrowthHealthImageIndividualInjuryMarkov ChainsMathematicsMeasurableMeasurementMeasuresMicrotubulesModelingNatural regenerationNeuronal InjuryNeuronsOutcomePatternRegulationRoleSelection BiasShapesStereotypingSystemTestingTimeValidationWorkaxon injuryaxon regenerationbasecell injurydiscrete timeexperimental studyflexibilityin silicoin vivoin vivo Modelin vivo evaluationin vivo imaginginsightmathematical methodsmathematical modelnovelpredictive modelingresilienceresponseresponse to injurytheories
项目摘要
Project Summary
Neurons rely on polarity and stability of the microtubule cytoskeleton to support long-range directed
transport and long-term survival. However, both polarity and stability can be rapidly altered in response to
injury and these rearrangements are critical for neuronal resilience. It is becoming clear that rather than a
single master mechanism controlling neuronal microtubule organization through time and space, multiple
mechanisms operate in parallel. This complexity makes it challenging to understand how each mechanism
contributes to filament organization and how the system works as a whole. To overcome this challenge, a
mathematical framework that incorporates known mechanisms will be built. This framework will be invaluable
for understanding the dendrite microtubule system, and how it responds to perturbations induced by injury.
Aim 1. Polarized organization of microtubules in neurons is critical for correct cargo delivery to axons and
dendrites. A spatial stochastic model of the polarized array of dendritic microtubules will be constructed using
known mechanisms of polarity control in Drosophila dendrites. This model will also incorporate known
parameters for microtubule growth dynamics. Model validation will be carried out using experimental
perturbations of polarity control mechanisms as well as using measurements of microtubule dynamics. This
model will provide a framework for understanding how individual microtubule dynamics and local polarity
mechanisms influence microtubule spatial organization and polarity.
Aim 2. Neurons normally maintain the same polarized arrangement of microtubules for a lifetime. However, if
the axon is removed, a dendrite can reverse polarity and become a regenerating axon. How polarity reversal
occurs is not understood. The hypothesis that increased entry of microtubules from the cell body drives
reversal will be tested in vivo and in silico. The role of other control mechanisms in polarity reversal will also be
systematically addressed by testing the mathematical model and informing new experimental directions.
Aim 3. Most neurons have several dendrites emerging from the cell body. After axon damage, only one
dendrite switches polarity whereas the others revert to their pre-injury orientation. This selection bias is
hypothesized to depend on branching patterns of the dendrites. The combination of axon removal experiments
in neurons with distinct branching features and a reduced mathematical description of microtubule behavior will
provide insights on how dendrite geometry influences polarity control, robustness, and regeneration.
The combination of sophisticated live imaging of microtubules in neurons in vivo with new mathematical
modeling of microtubule behavior will drive new insights on how neurons maintain a polarized, yet dynamic and
flexible microtubule cytoskeleton for a lifetime. The challenges posed by axonal injury require radical
cytoskeletal reorganization. Models developed and validated with measurements from healthy neurons will be
used to gain deep understanding of microtubule control mechanisms that are critical for axonal regeneration.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria-Veronica Ciocanel其他文献
Maria-Veronica Ciocanel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria-Veronica Ciocanel', 18)}}的其他基金
Pairing Modeling and Experiment to Understand Microtubule Behavior in Healthy and Injured Neurons
配对建模和实验以了解健康和受损神经元的微管行为
- 批准号:
10650332 - 财政年份:2022
- 资助金额:
$ 33.57万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 33.57万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 33.57万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 33.57万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 33.57万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 33.57万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 33.57万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 33.57万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 33.57万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 33.57万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 33.57万 - 项目类别:
Research Grant














{{item.name}}会员




