Fully Automated High-Throughput Quantitative MRI of the Liver

肝脏全自动高通量定量 MRI

基本信息

  • 批准号:
    10445467
  • 负责人:
  • 金额:
    $ 62.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-08 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY: The overall goal of this application is to develop, implement and test a “single button push”, integrated combination of innovative MRI solutions to enable widespread and generalizable implementation of quantitative evaluation of chronic liver disease in < 5 minutes. We aim to design a reliable, efficient, low variability, and fully automated, MRI exam. This goal will be enabled by artificial intelligence (AI), reengineered chemical shift encoded (CSE)-MRI to provide “error-free” free-breathing measurement of liver fat and iron, an innovative MRI suite design, and automated analysis. In this way, we aim to achieve high-throughput, low-cost evaluation of liver disease with high accuracy, precision and reproducibility. Abnormal accumulation of triglycerides in hepatocytes, or steatosis, is the earliest feature of non-alcoholic fatty liver disease (NAFLD), affecting ~100 million people in the US. Liver iron overload is common in patients with hereditary hemochromatosis and those receiving repeated blood transfusions. Early, affordable, and accessible non-invasive detection and quantitative staging of liver fat and iron would impact the health of millions of people at risk for NAFLD and its comorbidities, as well as those with liver iron overload. Confounder-corrected CSE-MRI provides simultaneous estimation of liver proton density fat fraction (PDFF) and R2*, which are accurate, precise and reproducible biomarkers of liver fat and iron. A primary determinant of the cost of MRI is scheduled MRI suite time. Minimum slot times to accommodate the majority of patients are driven by variability in exam duration and MRI suite turnaround time. As MRI scan times are shortened, the largest contributor to exam duration is the time needed for i) manual image prescription, ii) repeated scans (rework), and iii) room turnaround time. Many patients, including children, are unable to hold their breath for the duration of CSE-MRI (~20 seconds) leading to ghosting artifacts that corrupt PDFF / R2* maps, necessitating repeated CSE-MRI acquisitions and exacerbating exam time variability. We will address these challenges by developing fully automated AI-based image prescription based on multi-center, multi-vendor data at 1.5T and 3T, in parallel with a novel “error-proof” high SNR “snapshot” CSE-MRI method that is insensitive to breathing motion. This will be performed using a novel MR “Smart Suite” design, capable of patient turnaround in less than 2 minutes, followed by automated quantitative analysis and reporting. We will implement and test a fully automated, single button push CSE-MRI exam by aiming to: 1). Develop and optimize motion insensitive, high SNR, free-breathing CSE-MRI for accurate and precise measurement of PDFF and R2*, 2). Confirm the accuracy, repeatability, and reproducibility of the proposed CSE-MRI method in patients with liver fat and iron overload, and 3). Implement and validate a fully automated CSE-MRI protocol in less than 5 minutes of MR room time. If successful, this work will provide a high-throughput, high value solution for liver fat/iron quantification. The innovations proposed in this application will also have broad applicability beyond CSE-MRI, and ultimately reduce cost and increase access, through improvements in MRI scanner utilization.
项目概要: 这个应用程序的总体目标是开发,实施和测试一个“单一的按钮推”,集成 创新的MRI解决方案的组合,以实现定量的广泛和普遍的实施 在< 5分钟内评估慢性肝病。我们的目标是设计一个可靠,高效,低变异性, 自动化,MRI检查。这一目标将通过人工智能(AI),重新设计的化学位移 编码(CSE)-MRI提供“无误差”的自由呼吸测量肝脏脂肪和铁,一种创新的MRI 套件设计和自动化分析。这样,我们的目标是实现高通量,低成本的评价 具有高准确性、精密度和可重复性。甘油三酯异常蓄积, 肝细胞或脂肪变性是非酒精性脂肪肝(NAFLD)的最早特征,影响约100 在美国的百万人。肝脏铁超载常见于遗传性血色病患者, 反复输血。早期、可负担得起和可获得的非侵入性检测和定量 肝脏脂肪和铁的分期将影响数百万处于NAFLD及其合并症风险中的人的健康, 以及那些肝脏铁超载的人。混淆校正的CSE-MRI可同时估计 肝脏质子密度脂肪分数(PDFF)和R2*,它们是准确、精确和可重复的肝脏生物标志物 脂肪和铁。MRI成本的主要决定因素是预定的MRI套件时间。最短时隙时间, 由于检查持续时间和MRI套件周转时间的可变性, 随着MRI扫描时间的缩短,对检查持续时间影响最大的是i)手动成像所需的时间 处方,ii)重复扫描(返工),和iii)房间周转时间。许多患者,包括儿童, 无法在CSE-MRI期间(约20秒)屏住呼吸,导致重影伪影损坏 PDFF / R2* 图,需要重复CSE-MRI采集并加剧检查时间变异性。我们将 通过开发基于多中心的全自动AI图像处方来应对这些挑战, 1.5T和3 T下的多供应商数据,同时采用新型“防错”高SNR“快照”CSE-MRI方法 对呼吸运动不敏感。这将使用新型MR“Smart Suite”设计进行, 在不到2分钟的时间内完成患者周转,然后进行自动定量分析和报告。我们 将实施并测试全自动、单按钮CSE-MRI检查,目的是:1)。开发和 优化运动不敏感、高SNR、自由呼吸CSE-MRI,以准确测量PDFF 和R2*,2)。确认拟定CSE-MRI方法在患者中的准确性、重复性和再现性 肝脏脂肪和铁超载,和3)。实施并验证全自动CSE-MRI方案, 5分钟的MR室时间。如果成功,这项工作将为肝脏提供高通量,高价值的解决方案 脂肪/铁定量。本申请中提出的创新也将具有广泛的适用性, CSE-MRI,并最终降低成本和增加访问,通过提高MRI扫描仪的利用率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Diego Hernando其他文献

Diego Hernando的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Diego Hernando', 18)}}的其他基金

Fully Automated High-Throughput Quantitative MRI of the Liver
肝脏全自动高通量定量 MRI
  • 批准号:
    10605255
  • 财政年份:
    2022
  • 资助金额:
    $ 62.71万
  • 项目类别:
MRI-based Quantitative Susceptibility Mapping of Hepatic Iron Overload
基于 MRI 的肝铁过载定量磁化率图
  • 批准号:
    9902421
  • 财政年份:
    2018
  • 资助金额:
    $ 62.71万
  • 项目类别:
MRI-based Quantitative Susceptibility Mapping of Hepatic Iron Overload
基于 MRI 的肝铁过载定量磁化率图
  • 批准号:
    9500652
  • 财政年份:
    2018
  • 资助金额:
    $ 62.71万
  • 项目类别:
MRI-based Quantitative Susceptibility Mapping of Hepatic Iron Overload
基于 MRI 的肝铁过载定量磁化率图
  • 批准号:
    10201584
  • 财政年份:
    2018
  • 资助金额:
    $ 62.71万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 62.71万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 62.71万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 62.71万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 62.71万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 62.71万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 62.71万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 62.71万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 62.71万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 62.71万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 62.71万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了