Multi-omic Risk Prediction of Chronic Obstructive Pulmonary Disease in European- and African-Ancestry Populations
欧洲和非洲血统人群慢性阻塞性肺疾病的多组学风险预测
基本信息
- 批准号:10445739
- 负责人:
- 金额:$ 16.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAfrican American populationAfrican ancestryAgeBindingBloodBlood specimenChronic Obstructive Pulmonary DiseaseClassificationClinicalDataDatabasesDetectionDevelopmentDevelopment PlansDiseaseDisease susceptibilityEarly identificationEuropeanFutureGene ExpressionGenesGeneticGenetic RiskGenetic TranscriptionGenomic SegmentGlassHeterogeneityIndividualInhalationInterventionLearningLungMachine LearningMapsMeasuresOdds RatioOutcomeParticipantPathogenesisPathogenicityPathway interactionsPatientsPerformancePharmaceutical PreparationsPhenotypePopulationPredictive ValuePredispositionPulmonary Function Test/Forced Expiratory Volume 1Regulator GenesRegulatory PathwayResearchResearch PersonnelRiskSample SizeSamplingSmokingSmoking HistorySpirometryStructure of parenchyma of lungSubgroupTechniquesTestingTherapeuticTherapeutic InterventionTissue SampleTrainingTranscriptVariantWhole Bloodbasebiobankcareer developmentcigarette smokingclinical practiceclinical riskcohortdisease heterogeneitydisease phenotypedisorder riskdisorder subtypedrug candidatedrug repurposinggene regulatory networkgenetic architecturegenetic associationgenetic epidemiologygenetic variantgenome wide association studyhigh riskimprovedinsightlearning networklung basal segmentmachine learning methodmortalitymultiple omicspersonalized interventionpolygenic risk scorepredictive modelingpulmonary functionresearch and developmentrespiratoryrisk predictionrisk stratificationtooltranscription factortranscriptometranscriptome sequencingtranscriptomics
项目摘要
PROJECT SUMMARY/ABSTRACT
Chronic obstructive pulmonary disease (COPD) is a leading cause of respiratory mortality worldwide15.
Identifying highly susceptible individuals early in their disease course and understanding pathogenic
mechanisms, before irreversible loss of lung function, is of utmost importance16,17. Genetics account for about
40% of COPD susceptibility18–20. Genome-wide association studies (GWASs) have identified multiple variants
associated with COPD21–23. Individual variants are poor for risk prediction, but in aggregate genetic variants can
account for a substantial portion of risk. Pooling millions of GWAS variants, I created a polygenic risk score (PRS)
for COPD that can identify individuals at high risk for COPD, though performance was less optimal in non-
Europeans24. Multi-ancestry PRSs are needed as genetic ancestry is not readily determined in clinical practice.
Further, gene expression, reflecting genetic and environmental influences, provides pathobiologic information
for COPD susceptibility and heterogeneity. A transcriptional risk score (TRS) for COPD that adds predictive value
above clinical risk factors25 has yet to be developed. The appeal of using -Omics data for risk stratification is that
these data can lend insight into why certain COPD subgroups are at elevated risk of progression. Gene
regulatory networks26 have been used to uncover mechanisms of COPD heterogeneity that were not found by
traditional gene-based approaches. Therefore, we hypothesize that polygenic and transcriptional risk scores will
substantially improve upon clinical factors in identifying those at higher risk for COPD and related phenotypes,
and can be used to identify pathways for therapeutic intervention. We will train multi-ancestry PRSs using 4,225
African ancestry individuals from UK Biobank and existing analyses of 8,429 African-Americans from CHARGE,
and test in the Genetic Epidemiology of COPD (COPDGene: n=10,198) study and Lung Tissue Research
Consortium (LTRC: n=1,078). We will create a multi-ancestry transcriptional risk score (TRS) using whole blood
RNA-sequencing (RNA-seq) data in training (n=3,394) and evaluate predictive performance in testing samples
(n=1,131) of COPDGene. We will use Connectivity Map (CMap)8,27 to identify drug repurposing candidates based
on TRS transcripts. We will leverage lung RNA-seq data from LTRC to create a lung TRS, and test in COPDGene
blood samples. We will classify COPDGene participants along the axes of the existing PRS and lung TRS (e.g.
“High” PRS, “Low” TRS), which we expect will identify those at high risk for COPD-related phenotypes and
progression. To understand why certain individuals are at high risk for COPD phenotypes, we will utilize gene
regulatory networks to identify pathways differing between PRS/TRS classifications, and use the Gene
RegulAtory Network Database (GRAND)9 to prioritize drug repurposing candidates. These aims will generate
data for future studies, which will focus on validating COPD -Omics risk scores and drug candidates in real-world
cohorts1, and using machine learning to predict the network effects of drug candidates. The proposed research
and career development plan will train me to use machine learning for multi-omic integration and risk prediction.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew R Moll其他文献
Matthew R Moll的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew R Moll', 18)}}的其他基金
Multi-omic Risk Prediction of Chronic Obstructive Pulmonary Disease in European- and African-Ancestry Populations_Supplement
欧洲和非洲血统人群慢性阻塞性肺疾病的多组学风险预测_补充
- 批准号:
10772527 - 财政年份:2022
- 资助金额:
$ 16.85万 - 项目类别:
Multi-omic Risk Prediction of Chronic Obstructive Pulmonary Disease in European- and African-Ancestry Populations
欧洲和非洲血统人群慢性阻塞性肺疾病的多组学风险预测
- 批准号:
10594517 - 财政年份:2022
- 资助金额:
$ 16.85万 - 项目类别:
相似海外基金
Drug Abuse and Crime Across the Life Course in an African American Population
非裔美国人一生中的药物滥用和犯罪
- 批准号:
8013895 - 财政年份:2008
- 资助金额:
$ 16.85万 - 项目类别:
Drug Abuse and Crime Across the Life Course in an African American Population
非裔美国人一生中的药物滥用和犯罪
- 批准号:
7462657 - 财政年份:2008
- 资助金额:
$ 16.85万 - 项目类别:
Drug Abuse and Crime Across the Life Course in an African American Population
非裔美国人一生中的药物滥用和犯罪
- 批准号:
7755368 - 财政年份:2008
- 资助金额:
$ 16.85万 - 项目类别:
Drug Abuse and Crime Across the Life Course in an African American Population
非裔美国人一生中的药物滥用和犯罪
- 批准号:
7586197 - 财政年份:2008
- 资助金额:
$ 16.85万 - 项目类别:
Molecular and Genetic Signatures of Perturbed Diabetic Pathways with Hepatitis C Virus infection and Co-morbidity Risks in African American Population
丙型肝炎病毒感染引起的糖尿病通路紊乱的分子和遗传特征以及非洲裔美国人的共病风险
- 批准号:
10132461 - 财政年份:1997
- 资助金额:
$ 16.85万 - 项目类别:
Molecular and Genetic Signatures of Perturbed Diabetic Pathways with Hepatitis C Virus infection and Co-morbidity Risks in African American Population
丙型肝炎病毒感染引起的糖尿病通路紊乱的分子和遗传特征以及非洲裔美国人的共病风险
- 批准号:
10331060 - 财政年份:1997
- 资助金额:
$ 16.85万 - 项目类别:
Molecular and Genetic Signatures of Perturbed Diabetic Pathways with Hepatitis C Virus infection and Co-morbidity Risks in African American Population
丙型肝炎病毒感染引起的糖尿病通路紊乱的分子和遗传特征以及非洲裔美国人的共病风险
- 批准号:
10597891 - 财政年份:1997
- 资助金额:
$ 16.85万 - 项目类别:
Molecular and Genetic Signatures of Perturbed Diabetic Pathways with Hepatitis C Virus infection and Co-morbidity Risks in African American Population
丙型肝炎病毒感染引起的糖尿病通路紊乱的分子和遗传特征以及非洲裔美国人的共病风险
- 批准号:
10178913 - 财政年份:1997
- 资助金额:
$ 16.85万 - 项目类别: