Multi-omic Risk Prediction of Chronic Obstructive Pulmonary Disease in European- and African-Ancestry Populations
欧洲和非洲血统人群慢性阻塞性肺疾病的多组学风险预测
基本信息
- 批准号:10594517
- 负责人:
- 金额:$ 16.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAddressAdrenal Cortex HormonesAfrican American populationAfrican ancestryAgeBindingBloodBlood specimenChronic Obstructive Pulmonary DiseaseClassificationClinicalDataDatabasesDetectionDevelopmentDevelopment PlansDiseaseDisease susceptibilityEarly identificationEuropeanEuropean ancestryFutureGene ExpressionGenesGeneticGenetic RiskGenetic TranscriptionGenomic SegmentGlassHeterogeneityIndividualInhalationInterventionLearningLungMachine LearningMapsMeasuresOdds RatioOutcomeParticipantPathogenesisPathogenicityPathway interactionsPatientsPerformancePharmaceutical PreparationsPhenotypePopulationPredictive ValuePredispositionPulmonary Function Test/Forced Expiratory Volume 1Regulatory PathwayResearchResearch PersonnelRiskRisk FactorsSample SizeSamplingSmokingSmoking HistorySpirometryStructure of parenchyma of lungSubgroupTechniquesTestingTherapeuticTherapeutic InterventionTissue SampleTrainingTranscriptVariantWhole Bloodbiobankcandidate identificationcareer developmentcigarette smokingclinical practiceclinical riskcohortdisease heterogeneitydisease phenotypedisorder riskdisorder subtypedrug candidatedrug repurposinggene regulatory networkgenetic architecturegenetic associationgenetic epidemiologygenetic predictorsgenetic variantgenome wide association studyhigh riskimprovedinsightlearning networklung basal segmentmachine learning methodmortalitymultiple omicspersonalized interventionpolygenic risk scorepredictive modelingprogression riskpulmonary functionresearch and developmentrespiratoryrisk predictionrisk stratificationtooltranscription factortranscriptometranscriptome sequencingtranscriptomics
项目摘要
PROJECT SUMMARY/ABSTRACT
Chronic obstructive pulmonary disease (COPD) is a leading cause of respiratory mortality worldwide15.
Identifying highly susceptible individuals early in their disease course and understanding pathogenic
mechanisms, before irreversible loss of lung function, is of utmost importance16,17. Genetics account for about
40% of COPD susceptibility18–20. Genome-wide association studies (GWASs) have identified multiple variants
associated with COPD21–23. Individual variants are poor for risk prediction, but in aggregate genetic variants can
account for a substantial portion of risk. Pooling millions of GWAS variants, I created a polygenic risk score (PRS)
for COPD that can identify individuals at high risk for COPD, though performance was less optimal in non-
Europeans24. Multi-ancestry PRSs are needed as genetic ancestry is not readily determined in clinical practice.
Further, gene expression, reflecting genetic and environmental influences, provides pathobiologic information
for COPD susceptibility and heterogeneity. A transcriptional risk score (TRS) for COPD that adds predictive value
above clinical risk factors25 has yet to be developed. The appeal of using -Omics data for risk stratification is that
these data can lend insight into why certain COPD subgroups are at elevated risk of progression. Gene
regulatory networks26 have been used to uncover mechanisms of COPD heterogeneity that were not found by
traditional gene-based approaches. Therefore, we hypothesize that polygenic and transcriptional risk scores will
substantially improve upon clinical factors in identifying those at higher risk for COPD and related phenotypes,
and can be used to identify pathways for therapeutic intervention. We will train multi-ancestry PRSs using 4,225
African ancestry individuals from UK Biobank and existing analyses of 8,429 African-Americans from CHARGE,
and test in the Genetic Epidemiology of COPD (COPDGene: n=10,198) study and Lung Tissue Research
Consortium (LTRC: n=1,078). We will create a multi-ancestry transcriptional risk score (TRS) using whole blood
RNA-sequencing (RNA-seq) data in training (n=3,394) and evaluate predictive performance in testing samples
(n=1,131) of COPDGene. We will use Connectivity Map (CMap)8,27 to identify drug repurposing candidates based
on TRS transcripts. We will leverage lung RNA-seq data from LTRC to create a lung TRS, and test in COPDGene
blood samples. We will classify COPDGene participants along the axes of the existing PRS and lung TRS (e.g.
“High” PRS, “Low” TRS), which we expect will identify those at high risk for COPD-related phenotypes and
progression. To understand why certain individuals are at high risk for COPD phenotypes, we will utilize gene
regulatory networks to identify pathways differing between PRS/TRS classifications, and use the Gene
RegulAtory Network Database (GRAND)9 to prioritize drug repurposing candidates. These aims will generate
data for future studies, which will focus on validating COPD -Omics risk scores and drug candidates in real-world
cohorts1, and using machine learning to predict the network effects of drug candidates. The proposed research
and career development plan will train me to use machine learning for multi-omic integration and risk prediction.
项目总结/摘要
慢性阻塞性肺疾病(COPD)是全球呼吸系统死亡的主要原因15。
在病程早期识别高度易感个体并了解致病性
在肺功能不可逆丧失之前,肺功能受损的机制是最重要的16,17。遗传学解释了
40%的COPD易感性18 -20。全基因组关联研究(GWAS)已经确定了多种变体
与COPD相关21 -23。个体变异对于风险预测来说是很差的,但总体上遗传变异可以
占风险的很大一部分。汇集了数百万个GWAS变体,我创建了一个多基因风险评分(PRS)
对于COPD,可以识别COPD高风险个体,尽管在非COPD患者中性能不太理想,
欧洲人24.需要多血统PRS,因为在临床实践中不易确定遗传血统。
此外,反映遗传和环境影响的基因表达提供了病理生物学信息
COPD易感性和异质性。COPD的转录风险评分(TRS)增加了预测价值
上述临床风险因素25尚待开发。使用组学数据进行风险分层的吸引力在于,
这些数据可以帮助我们了解为什么某些COPD亚组的进展风险升高。基因
调节网络26已被用于揭示COPD异质性的机制,这些机制未被
传统的基于基因的方法。因此,我们假设多基因和转录风险评分将
在识别COPD和相关表型的高风险人群中显著改善临床因素,
并可用于鉴定治疗干预的途径。我们将使用4,225名多血统PRS进行培训
来自英国生物银行的非洲血统个体和来自CHARGE的8,429名非洲裔美国人的现有分析,
COPD遗传流行病学(COPDGene:n= 10,198)研究和肺组织研究中的检测
联合体(LTRC:n= 1,078)。我们将使用全血创建多祖先转录风险评分(TRS)
训练中的RNA测序(RNA-seq)数据(n= 3,394)并评估测试样本的预测性能
(n= 1,131)COPD基因。我们将使用连接图(CMap)8,27来识别药物再利用候选者,
TRS的成绩单我们将利用LTRC的肺RNA-seq数据创建肺TRS,并在COPDGene中进行测试
血液样本我们将沿着现有PRS和肺TRS的轴对COPDGene参与者进行分类(例如,
“高”PRS,“低”TRS),我们预计这将识别出那些COPD相关表型的高风险人群,
进展为了理解为什么某些个体具有COPD表型的高风险,我们将利用基因
调控网络,以确定不同的PRS/TRS分类之间的途径,并使用基因
监管网络数据库(GRAND)9,用于对药物再利用候选药物进行优先排序。这些目标将产生
未来研究的数据,将侧重于验证COPD -组学风险评分和现实世界中的候选药物
cohorts 1,并使用机器学习来预测候选药物的网络效应。拟议研究
和职业发展计划将训练我使用机器学习进行多组学整合和风险预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew R Moll其他文献
Matthew R Moll的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew R Moll', 18)}}的其他基金
Multi-omic Risk Prediction of Chronic Obstructive Pulmonary Disease in European- and African-Ancestry Populations_Supplement
欧洲和非洲血统人群慢性阻塞性肺疾病的多组学风险预测_补充
- 批准号:
10772527 - 财政年份:2022
- 资助金额:
$ 16.85万 - 项目类别:
Multi-omic Risk Prediction of Chronic Obstructive Pulmonary Disease in European- and African-Ancestry Populations
欧洲和非洲血统人群慢性阻塞性肺疾病的多组学风险预测
- 批准号:
10445739 - 财政年份:2022
- 资助金额:
$ 16.85万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 16.85万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 16.85万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 16.85万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 16.85万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 16.85万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 16.85万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 16.85万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 16.85万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 16.85万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 16.85万 - 项目类别:
Research Grant














{{item.name}}会员




